Автокореляція
Шаблон:Короткий опис Шаблон:Кореляція та коваріація


Автокореля́ція (Шаблон:Lang-en), іноді відома як послідо́вна кореля́ція (Шаблон:Lang-en), у випадку Шаблон:Нп — це кореляція сигналу із затриманою копією самого себе як функція від затримки. Неформально — це схожість між спостереженнями як функція від відставання в часі (Шаблон:Lang-en) між ними. Аналіз автокореляції — це математичний інструмент для пошуку повторюваних закономірностей, таких як наявність періодичного сигналу, заекранованого Шаблон:Нп, або визначення Шаблон:Нп в сигналі, на яку натякають його гармонічні частоти. Його часто використовують в обробці сигналів для аналізу функцій або рядів значень, таких як сигнали часової області.
Різні галузі досліджень визначають автокореляцію по-різному, й не всі ці визначення є рівнозначними. У деяких галузях цей термін використовують взаємозамінно з автоковаріацією.
Особливими видами процесів із автокореляцією є процеси з Шаблон:Нп, Шаблон:Нп, авторегресійні процеси та Шаблон:Нп.
Автокореляція стохастичних процесів
У статистиці автокореляція дійсного або комплексного випадкового процесу — це кореляція Пірсона між значеннями цього процесу в різні моменти часу як функція від двох моментів часу, або від відставання в часі. Нехай — випадковий процес, а — будь-яка точка в часі ( може бути цілим числом для Шаблон:Нп, або дійсним числом для Шаблон:Нп процесу). Тоді — це значення (або Шаблон:Нп), отримане в результаті заданого Шаблон:Нп процесу в момент часу . Припустімо, що цей процес у момент часу має середнє значення та дисперсію , для будь-якого . Тоді визначенням автокореляці́йної фу́нкції (Шаблон:Lang-en) між моментами часу та є[1]Шаблон:Rp[2]Шаблон:Rp
де — оператор математичного сподівання, а риска подає комплексне спряження. Зауважте, що це математичне сподівання може не бути Шаблон:Нп.
Віднімання середнього значення перед множенням дає автоковаріаці́йну фу́нкцію (Шаблон:Lang-en) між моментами часу та :[1]Шаблон:Rp[2]Шаблон:Rp
Зауважте, що цей вираз не є однозначно визначеним для всіх часових рядів та процесів, оскільки середнього значення може не існувати, або дисперсія може бути нульовою (для сталого процесу) чи нескінченною (для процесів із розподілом без коректних моментів, таких як певні типи степеневого розподілу).
Визначення для стаціонарного в широкому сенсі стохастичного процесу
Якщо — стаціонарний у широкому сенсі процес, то середнє значення та дисперсія незалежні від часу, й відтак автоковаріаційна функція залежить лише від відставання між та : автоковаріація залежить лише від часової відстані між парою значень, але не від їхнього положення в часі. Це відтак означає, що автоковаріацію та автокореляцію можливо виразити як функцію від відставання в часі, й що вона буде парною функцією відставання в часі . Це дає звичніші вигляди автокореляційної функції[1]Шаблон:Rp
та автоковаріаційної функції:
Унормовування
Поширеною практикою в деяких дисциплінах (наприклад, у статистиці та аналізі часових рядів) є унормовувати автоковаріаційну функцію, щоб отримувати залежний від часу коефіцієнт кореляції Пірсона. Проте в деяких інших дисциплінах (наприклад, в інженерії) унормовування зазвичай пропускають, а терміни «автокореляція» та «автоковаріація» використовують як взаємозамінні.
Визначення коефіцієнта автокореляції стохастичного процесу:[2]Шаблон:Rp
Якщо функція однозначно визначена, її значення мусять лежати в діапазоні , причому 1 вказує на ідеальну кореляцію, а −1 — на ідеальну антикореляцію.
Для слабко стаціонарного, стаціонарного в широкому сенсі (СШС) процесу, визначення таке:
де
Унормовування важливе як тому, що інтерпретація автокореляції як кореляції забезпечує безмасштабну міру сили статистичної залежності, так і тому, що воно впливає на статистичні властивості оцінюваних автокореляцій.
Властивості
Властивість симетрії
Той факт, що автокореляційна функція парна, може бути сформульовано як[2]Шаблон:Rp
відповідно, для СШС процесу:[2]Шаблон:Rp
Максимум в нулі
Зверніть увагу, що завжди дійсна.
Нерівність Коші — Буняковського
Нерівність Коші — Буняковського, нерівність для стохастичних процесів:[1]Шаблон:Rp
Автокореляція білого шуму
Автокореляція неперервночасового сигналу білого шуму матиме сильний пік (представлений дельта-функцією Дірака) при , й дорівнюватиме для всіх інших .
Теорема Вінера — Хінчина
Шаблон:Нп пов'язує автокореляційну функцію зі спектральною густиною потужності через перетворення Фур'є:
Для дійснозначних функцій симетрична автокореляційна функція має дійсне симетричне перетворення, тож Шаблон:Нп можливо виразити в термінах лише дійсних косинусів:
Шаблон:ЯкірецьАвтокореляція випадкових векторів
(Потенційно залежна від часу) автокореляці́йна ма́триця (Шаблон:Lang-en, також звана другим моментом) (потенційно залежного від часу) випадкового вектора — це матриця , яка містить як елементи автокореляції всіх пар елементів випадкового вектора . Автокореляційну матрицю використовують у різних алгоритмах цифрової обробки сигналів.
Для випадкового вектора , що містить випадкові елементи, математичне сподівання та дисперсія яких існують, автокореляційну матрицю визначають як[3]Шаблон:Rp[1]Шаблон:Rp
де позначує транспонування, й має розміри .
У поелементному записі:
Якщо — Шаблон:Нп, то автокореляційну матрицю натомість визначають як
Тут позначує ермітове транспонування.
Наприклад, якщо — випадковий вектор, то — матриця , чиїм -м елементом є .
Властивості автокореляційної матриці
- Автокореляційна матриця — ермітова матриця для комплексних випадкових векторів, і симетрична матриця для дійсних випадкових векторів.[3]Шаблон:Rp
- Автоковаріаційна матриця додатно напіввизначена,[3]Шаблон:Rp тобто, для всіх для дійсного випадкового вектора, й відповідно для всіх у разі комплексного випадкового вектора.
- Усі власні значення автокореляційної матриці є дійсними та невід'ємними.
- Автоковаріаційна матриця пов'язана з автокореляціною матрицею наступним чином:Відповідно, для комплексних випадкових векторів:
Автокореляція детермінованих сигналів
В обробці сигналів наведене вище визначення часто використовують без унормовування, тобто без віднімання середнього значення й ділення на дисперсію. Коли автокореляційну функцію унормовують за середнім значенням та дисперсією, її іноді називають коефіціє́нтом автокореля́ції (Шаблон:Lang-en)[4] або автоковаріаційною функцією.
Автокореляція неперервночасового сигналу
За заданого сигналу неперервну автокореляцію найчастіше визначають як неперервний взаємнокореляційний інтеграл із самим собою, з відставанням .[1]Шаблон:Rp
де являє собою комплексне спряження . Зверніть увагу, що параметр в інтегралі є фіктивною змінною, необхідною лише для обчислення інтеграла. Вона не несе конкретного змісту.
Автокореляція дискретночасового сигналу
Дискретна автокореляція за відставання для дискретночасового сигналу часу :
Наведені вище визначення працюють для квадратно інтегровних або квадратно сумовних сигналів, тобто, зі скінченною енергією. Сигнали, що «тривають вічно», натомість розглядають як випадкові процеси, й у цьому випадку необхідні відмінні визначення, на основі математичних сподівань. Для стаціонарних у широкому сенсі випадкових процесів автокореляції визначають як
Для процесів, що не є стаціонарними, вони також будуть функціями від та .
Для процесів, що є також Шаблон:Нп, математичне сподівання можливо замінити границею усереднення за часом. Автокореляцію ергодичного процесу іноді визначають як, або прирівнюють до[4]
Ці визначення мають ту перевагу, що вони дають осмислені однозначно визначені однопараметрові результати для періодичних функцій, навіть якщо ці функції не є результатом стаціонарних ергодичних процесів.
Крім того, сигнали, які тривають вічно, можливо розглядати за допомогою аналізу віконних автокореляційних функцій (Шаблон:Lang-en), застосовуючи скінченні інтеграли за часом. (Про пов'язаний процес див. віконне перетворення Фур'є.)
Визначення для періодичних сигналів
Якщо — неперервна періодична функція з періодом , то інтегрування від до замінюють інтегруванням над будь-яким інтервалом довжини :що рівнозначне
Властивості
Далі ми опишемо властивості лише одновимірних автокореляцій, оскільки більшість властивостей легко переносяться з одновимірного випадку на багатовимірні. Ці властивості справедливі для стаціонарних у широкому сенсі процесів.[5]
- Основною властивістю автокореляції є симетрія, , що легко довести з визначення. У неперервному випадку
- автокореляція є парною функцією , коли є дійсною функцією, і
- автокореляція є Шаблон:Нп , коли є комплексною функцією.
- Неперервна автокореляційна функція досягає свого піку в початку координат, де вона набуває дійсного значення, тобто, для будь-якої затримки , .[1]Шаблон:Rp Це — наслідок нерівності перестановок. Той самий результат має місце і в дискретному випадку.
- Автокореляція періодичної функції сама по собі є періодичною, з тим самим періодом.
- Автокореляція суми двох абсолютно некорельованих функцій (взаємна кореляція дорівнює нулеві для всіх ) є сумою автокореляцій кожної з функцій окремо.
- Оскільки автокореляція є особливим видом взаємної кореляції, вона зберігає всі властивості взаємної кореляції.
- За допомогою символу для подання згортки, й функції , що маніпулює функцією , й визначена як , визначення для може бути записано так:
Багатовимірна автокореляція
Багатовимірну автокореляцію визначають аналогічно. Наприклад, у трьох вимірах автокореляцією квадратно-сумовного дискретного сигналу була би
Коли перед обчисленням автокореляційної функції від сигналів віднімають середні значення, отриману функцію зазвичай називають автоковаріаційною функцією.
Ефективне обчислення
Для даних, виражених як дискретна послідовність, часто необхідно обчислювати автокореляцію з високою обчислювальною ефективністю. Шаблон:Нп, що ґрунтується на визначенні обробки сигналу , можливо використовувати, коли розмір сигналу невеликий. Наприклад, для обчислення автокореляції послідовності дійсного сигналу (тобто, , й для всіх інших значень Шаблон:Mvar) вручну ми спочатку з'ясовуємо, що щойно наведене визначення таке саме, як і «звичайне» множення, але зі зміщеннями праворуч, де кожне вертикальне додавання дає автокореляцію для певних значень відставання:
Таким чином, потрібна послідовність автокореляції — , де а автокореляція для інших значень відставання дорівнює нулеві. В цьому обчисленні ми не виконуємо операцію перенесення під час додавання, як це зазвичай відбувається при звичайному множенні. Зауважте, що ми можемо зменшити кількість необхідних операцій вдвічі, використовуючи притаманну автокореляції симетрію. Якщо сигнал виявляється періодичним, тобто то ми отримуємо циклічну автокореляцію (Шаблон:Lang-en, подібну до Шаблон:Нп), де лівий та правий хвости попередньої автокореляційної послідовності перекриватимуться й даватимуть , що має той самий період, що й послідовність сигналу Цю процедуру можливо розглядати як застосування властивості згортки Z-перетворення дискретного сигналу.
В той час як алгоритм грубої сили має порядок Шаблон:Math, існує декілька ефективних алгоритмів, які можуть обчислювати автокореляцію в межах порядку Шаблон:Math. Наприклад, Шаблон:Нп дозволяє обчислювати автокореляцію з сирих даних Шаблон:Math за допомогою двох швидких перетворень Фур'є (Шаблон:Lang-en):[6]Шаблон:Сторінка
де IFFT позначує обернене швидке перетворення Фур'є (Шаблон:Lang-en). Зірочка позначує комплексне спряження.
Як альтернатива, кореляцію для декількох Шаблон:Mvar можливо виконувати, використовуючи обчислення грубою сили для низьких значень Шаблон:Mvar, а потім поступово об'єднуючи дані Шаблон:Math з логарифмічною густиною для обчислення для вищих значень, що дає ту ж ефективність Шаблон:Math, але з нижчими вимогами до пам'яті.[7][8]
Оцінювання
Для дискретного процесу з відомими середнім значенням та дисперсією, для якого ми спостерігаємо спостережень , оцінку коефіцієнта автокореляції можна отримати через
для будь-якого додатного цілого . Коли істинне середнє значення та дисперсія відомі, ця оцінка є незмі́щеною (Шаблон:Lang-en). Якщо істинне середнє значення та дисперсія процесу невідомі, є декілька можливостей:
- Якщо та замінити стандартними формулами для вибіркового середнього та вибіркової дисперсії, то це змі́щена оці́нка (Шаблон:Lang-en).
- Оцінка на основі Шаблон:Нп замінює у наведеній вище формулі на . Ця оцінка завжди зміщена; проте, вона зазвичай має меншу середньоквадратичну похибку.[9][10]
- Інші можливості випливають із розгляду двох частин даних та окремо, та обчислення окремих вибіркових середніх та/або вибіркових дисперсій для використання при визначенні оцінки.Шаблон:Джерело
Перевага оцінок останнього типу полягає в тому, що набір оцінених автокореляцій, як функція від , потім формує функцію, яка є дійсною автокореляцією в тому сенсі, що можливо визначити теоретичний процес, що має саме таку автокореляцію. Інші оцінки можуть страждати від проблеми, що, якщо їх використовують для обчислення дисперсії лінійної комбінації -ів, то обчислювана дисперсія може виявлятися від'ємною.[11]
Регресійний аналіз
У регресійному аналізі з використанням даних часових рядів автокореляцію у цільовій змінній зазвичай моделюють авторегресійною моделлю (АР, Шаблон:Lang-en), Шаблон:Нп (КС, Шаблон:Lang-en), їхнім поєднанням як моделлю авторегресії з ковзним середнім (АРКС, Шаблон:Lang-en) або розширенням крайнього, званим моделлю авторегресії з інтегрованим ковзним середнім (АРІКС, Шаблон:Lang-en). При множинних взаємопов'язаних рядах даних використовують векторну авторегресію (ВАР, Шаблон:Lang-en) або її розширення.
У Шаблон:Нп (ЗНК, Шаблон:Lang-en) адекватність специфікації моделі можливо частково перевіряти, встановлюючи, чи існує автокореляція залишків регресії. Проблемну автокореляцію похибок, що самі по собі неспостережні, зазвичай можливо виявляти через те, що вона створює автокореляцію у спостережуваних залишках. (Похибки також відомі як «члени похибки», Шаблон:Lang-en, в економетрії.) Автокореляція похибок порушує припущення звичайних найменших квадратів, що члени похибки некорельовані, що означає незастосовність теореми Гауса — Маркова, і що оцінювачі ЗНК вже не є найкращими лінійними незміщеними оцінювачами (НЛНО, Шаблон:Lang-en). Хоч це й не зміщує оцінок коефіцієнтів ЗНК, але коли автокореляції похибок при малих відставання є додатними, то стандартні похибки, як правило, недооцінюються (а Шаблон:Нп завищуються).
Традиційною перевіркою на наявність автокореляції першого порядку є критерій Дарбіна — Уотсона, або, якщо пояснювальні змінні включають залежну змінну з відставанням, h-критерій Дарбіна. Проте, Дарбіна — Уотсона можливо лінійно відобразити на кореляцію Пірсона між значеннями та їхніми відставаннями.[12] Гнучкішим критерієм, що охоплює автокореляцію вищих порядків, і є застосовним незалежно від того, чи включають незалежні змінні відставання залежної змінної, є Шаблон:Нп. Він включає допоміжну регресію залишків, отримуваних в результаті оцінки цільової моделі, на (а) первинні незалежні змінні, та (б) k відставань залишків, де «k» є порядком цього критерію. Найпростішим варіантом статистичного критерію з цієї допоміжної регресії є TR 2, де T — розмір вибірки, а R 2 — коефіцієнт детермінації. За нульової гіпотези відсутності автокореляції ця статистика асимптотично має розподіл з k ступенями вільності.
До відповідей на ненульову автокореляцію належать Шаблон:Нп та Шаблон:Нп (гетероскедастично та автокореляційно стійкий, Шаблон:Lang-en).[13]
В оцінюванні Шаблон:Нп (КС) функцію автокореляції використовують, щоби визначати, яку кількість членів відставання буде доречно включити. Це ґрунтується на тому факті, що для процесу КС порядку q маємо для , й для .
Застосування
- Автокореляційний аналіз широко застосовують у флуоресцентній кореляційній спектроскопії,[14] щоби забезпечувати кількісне уявлення про дифузію та хімічні реакції на молекулярному рівні.[15]
- Іншим застосуванням автокореляції є вимірювання оптичних спектрів і вимірювання надкоротких світлових імпульсів, створюваних лазерами, обидва з використанням Шаблон:Нп.
- Автокореляцію використовують для аналізу даних Шаблон:Нп, що, зокрема, дозволяє визначати розподіл розмірів нанометрових частинок або міцел, зважених у рідині. Лазер, що світить у суміш, створює Шаблон:Нп, яка виникає в результаті руху частинок. Автокореляцію цього сигналу можливо аналізувати з точки зору дифузії частинок. З цього, знаючи в'язкість рідини, можливо обчислювати розміри частинок.
- Використовують у системі GPS для уточнення Шаблон:Нп, або часового зсуву між моментом передачі опорного сигналу на супутниках і моментом часу в приймачі на землі. Для цього приймач генерує копію сигналу 1 023-бітового коду C/A (Шаблон:Lang-en), і генерує рядки кодових імпульсів [-1,1] у пакетах по десять за раз, або 10 230 імпульси (1 023 × 10), злегка зміщуючись по ходу, щоби врахувати доплерівський зсув у вхідному супутниковому сигналі, доки сигнал приймачевої копії та коди супутникового сигналу не збіжаться.[16]
- Інтенсивність малокутового рентгенівського розсіювання наноструктурної системи — це перетворенням Фур'є просторової автокореляційної функції електронної густини.
- У науці про поверхню та в сканувальній зондовій мікроскопії автокореляцію використовують для встановлювання зв'язку між морфологією поверхні та функційними характеристиками.[17]
- В оптиці нормовані автокореляції та взаємні кореляції дають Шаблон:Нп електромагнітного поля.
- В обробці сигналів автокореляція може давати інформацію про повторювані події, такі як музичні долі (наприклад, щоби визначати темп) або частоти пульсарів, хоч вона й не може визначити положення долі в часі. Її також можуть використовувати, щоб Шаблон:Нп.
- У музичнім звукозаписі автокореляцію використовують як Шаблон:Нп перед обробкою голосу, як ефект дисторшн, або для усунення небажаних помилок і неточностей.[18]
- Дифракціювальники рентгенівських променів використовують автокореляцію в просторі замість часу за допомогою Шаблон:Нп, щоби полегшувати відновлення «фазової інформації Фур'є» про положення атомів, недоступної за допомогою самої лише дифракції.
- У статистиці просторова автокореляція між положеннями зразків також допомагає оцінювати Шаблон:Нп під час вибірки з неоднорідної сукупності.
- Алгоритм Шаблон:Нп для аналізу спектрів мас використовує автокореляцію у поєднанні зі взаємною кореляцією, щоб оцінювати подібність спостережуваного спектру до ідеалізованого спектру, що подає якийсь пептид.
- В астрофізиці автокореляцію використовують для вивчення та характеризування просторового розподілу галактик у Всесвіті, та при багатохвильових спостереженнях рентгенівських подвійних малої маси.
- У Шаблон:Нп просторова автокореляція стосується кореляції змінної з самою собою в просторі.
- При аналізі даних Монте-Карло марковських ланцюгів автокореляцію необхідно враховувати, щоби правильного визначати похибку.
- У науках про Землю (зокрема в геофізиці) її можливо використовувати для обчислення автокореляційного сейсмічного параметра за допомогою тривимірної сейсмічної зйомки під землею.
- У медичній ультразвуковій візуалізації автокореляцію використовують для унаочнювання кровотоку.
- При Шаблон:Нп наявність або відсутність автокореляції в нормі прибутковості активу може впливати на оптимальну частину портфеля для зберігання в цьому активі.
Послідовна залежність
Послідо́вна зале́жність (Шаблон:Lang-en) тісно пов'язана з поняттям автокореляції, але подає окреме поняття (див. кореляцію та залежність). Зокрема, можливо мати послідовну залежність за відсутності (лінійної) кореляції. Проте у деяких областях ці два терміни використовують як синоніми.
Часовий ряд випадкової величини має послідовну залежність, якщо значення в якийсь момент часу цього ряду статистично залежне від значення в інший момент часу . Ряд є послідовно незалежним, якщо між будь-якою парою моментів часу залежності немає.
Якщо часовий ряд стаціонарний, то статистична залежність всередині пари означала би, що існує статистична залежність між усіма парами значень з однаковим відставанням .
Див. також
- Автокореляційна матриця
- Шаблон:Нп
- Шаблон:Нп
- Шаблон:Нп
- Взаємна кореляція
- Шаблон:Нп
- Кореляційна функція
- Корелограма
- Шаблон:Нп
- Флюоресцентна кореляційна спектроскопія
- Шаблон:Нп
- Шаблон:Нп
- Шаблон:Нп
- Шаблон:Нп
- Шаблон:Нп (перетворення для автокорельованих членів похибки)
- Шаблон:Нп
- Шаблон:Нп
- Шаблон:Нп
Примітки
Література
- Шаблон:Cite book Шаблон:Ref-en
- Шаблон:Cite book Шаблон:Ref-en
- Mojtaba Soltanalian, and Petre Stoica. "Computational design of sequences with good correlation properties Шаблон:Webarchive." IEEE Transactions on Signal Processing, 60.5 (2012): 2180–2193. Шаблон:Ref-en
- Solomon W. Golomb, and Guang Gong. Signal design for good correlation: for wireless communication, cryptography, and radar Шаблон:Webarchive. Cambridge University Press, 2005. Шаблон:Ref-en
- Klapetek, Petr (2018). Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology Шаблон:Webarchive (Second ed.). Elsevier. pp. 108–112 Шаблон:ISBN. Шаблон:Ref-en
- Шаблон:MathWorld
- ↑ 1,0 1,1 1,2 1,3 1,4 1,5 1,6 Шаблон:Cite book Шаблон:Ref-en
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, Шаблон:ISBN Шаблон:Ref-en
- ↑ 3,0 3,1 3,2 Papoulis, Athanasius, Probability, Random variables and Stochastic processes, McGraw-Hill, 1991 Шаблон:Ref-en
- ↑ 4,0 4,1 Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite journal Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite journal Шаблон:Ref-en
- ↑ Шаблон:Cite web Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite journal Шаблон:Ref-en
- ↑ Шаблон:Cite journal Шаблон:Ref-en
- ↑ Шаблон:Cite book Шаблон:Ref-en
- ↑ Шаблон:Cite journal Шаблон:Ref-en
- ↑ Шаблон:Cite news Шаблон:Ref-en