Кільце Гензеля

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Кільцем Гензеля називається комутативне локальне кільце для якого виконується лема Гензеля. Цей клас кілець ввів японський математик Горо Азумайа[1], який назвав їх на честь Курта Гензеля.

Для кожного локального кільця можна отримати гензелеве кільце за допомогою процедури гензелізації. У комутативній алгебрі гензелізація часто замінює операцію поповнення, що відіграє важливу роль при локальному дослідженні об'єктів. В теорії етальних морфізмів і етальної топології гензелева R-алгебра розглядається як індуктивна границя етальних розширень кільця.

Означення

Кільцем Гензеля називається комутативне локальне кільце R, для якого виконується лема Гензеля. Для локального кільця із максимальним ідеалом 𝔪 цю умову можна сформулювати так, що для будь-якого многочлена P(X)R[X] і простого розв'язку a0R рівняння P(X) = 0 по модулю 𝔪, тобто P(a0)𝔪 і P(a0)∉𝔪 існує aR, для якого P(a)=0 і aa0mod𝔪..

Кільце Гензеля можна характеризувати як кільце, над яким будь-яка скінченна алгебра є прямим добутком локальних кілець.

Кільце Гензеля із сепарабельним замкнутим полем лишків називається строго гензелевим через локальність його спектра в етальній топології схем.

Приклади

Властивості

Гензелізація

Для будь-якого локального кільця R існує універсальна конструкція — локальна гензелева R-алгебра Rh, така що для будь-якої локальної гензелевої R-алгебри B існує єдиний гомоморфізм R-алгебр RhB.

Rh називається гензелізацією кільця R. Гензелізація задовольняє властивості:

Аналогічно конструкції побудови гензелевої R-алгебри Rh існує функтор строгої гензелевої R-алгебри Rsh.

Примітки

Шаблон:Reflist

Див. також

Література