Кососиметрична матриця

Матеріал з testwiki
Версія від 13:22, 25 квітня 2023, створена imported>SomGrain (growthexperiments-addlink-summary-summary:3|0|0)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Косо-симетричною (чи антисиметричною) називають квадратну матрицю, елементи якої симетричні зі знаком мінус щодо головної діагоналі, тобто:

i,j:aij=aji.

Тобто:

 AT=A.

Поняття розглядають переважно для матриць над кільцем характеристика якого не є рівною 2. Якщо характеристика є рівною 2, то кососиметричні матриці у попередньому означенні є еквівалентними симетричним. Іноді у цьому випадку додатково вимагається умова щоб усі елементи на діагоналі були рівні 0.

Приклади

Прикладами кососиметричних матриць є

  • A=(021204140),  адже  AT=(021204140)=A.
  • A=(07237042340)  оскільки AT=(07237042340)=A.


Властивості

  • Сума двох кососиметричних матриць і добуток кососиметричної матриці на скаляр є кососиметричними матрицями. Тобто кососиметричні матриці утворюють лінійний підпростір простору квадратних матриць заданого порядку. Розмірність цього підпростору є рівною 12n(n1).
  • Будь-яка квадратна матриця може в єдиний спосіб бути записаною як сума кососиметричної і симетричної матриць. А саме, якщо AMatn то можна записати:
A=12(AA𝖳)+12(A+A𝖳),
де перший доданок є кососиметричною матрицею, а другий — симетричною.
  • Для визначника кососиметричної матриці виконується рівність:
det(AT)=det(A)=(1)ndet(A).
Як наслідок визначник кососиметричної матриці (характеристика елементів якої не є рівною 2) завжди є рівним 0.
  • Якщо до всіх елементів матриці додати однаковий елемент, то визначник одержаної матриці буде рівним визначнику самої матриці. Тобто, якщо A є кососиметричною матрицею і E — квадратною матрицею того ж порядку усі елементи якої рівні 1, то для будь-якого x виконується рівність det(A+xE)=detA.
  • Ранг кососиметричної матриці завжди парний.
  • Визначник кососиметричної матриці парного порядку, як многочлен від її елементів є рівний квадрату многочлена який називається пфаффіаном матриці:
det(A)=Pf(A)2.

Матриці з дійсними елементами

Σ=[0λ1λ100000λ2λ200000λrλr000]


Дивись також

Джерела