Ряд Ліувілля — Неймана
Ряд Ліуві́лля — Не́ймана в інтегральному численні — нескінченний ряд, що відповідає розв'язку інтегрального рівняння Фредгольма з неперервним малим ядром. Названий за іменами Жозефа Ліувілля і Карла Неймана.
Отримання ряду
Шукатимемо розв'язок рівняння Фредгольма
методом послідовних наближень, поклавши :
Останній вираз у формулі є операторним записом інтеграла. Методом математичної індукції перевіряється така рівність:
Функція називають ітераціями. Можна показати, що всі ітерації неперервні й обмежені на :
де — міра множини , а .
З цієї оцінки випливає, що ряд
називаний рядом Ліувілля — Неймана, мажорується числовим рядом
який збігається в крузі , тому за таких ряд Ліувілля — Неймана збігається регулярно (абсолютно і рівномірно). Це означає, що послідовні наближення при рівномірно прямують до шуканої функції .
Див. також
Література
Посилання
- Mathews, Jon; Walker, Robert L. (1970), Mathematical methods of physics (2nd ed.), New York: W. A. Benjamin, Шаблон:Isbn
- Шаблон:Citation