Багатозначна функція

Багатозна́чна фу́нкція або багатозна́чне відобра́ження — узагальнення поняття функції, що допускає наявність декількох значень функції для одного аргументу[1].
Визначення
Функція , яка кожному елементу множини ставить у відповідність деяку підмножину множини називається багатозначною функцією[2], якщо хоча б для одного значення містить більше одного елемента
Звичайні (однозначні) функції можна розглядати як окремий випадок багатозначних, у яких значення складається рівно з одного елемента.
Приклади
Найпростіший приклад — двозначна функція квадратного кореня з додатного числа, у неї два значення, що розрізняються знаком. Наприклад, квадратний корінь з 16 має два значення — і
Інший приклад — обернені тригонометричні функції (наприклад, арксинус) — оскільки значення прямих тригонометричних функцій повторюються з періодом або то значення обернених функцій багатозначні («нескінченнозначні»), всі вони мають вигляд або де — довільне ціле число.
Багатозначні функції незручно використовувати у формулах, тому з їх значень нерідко виділяють одне, яке називають головним. Для квадратного кореня це додатне значення, для арксинуса — значення, що потрапляє в інтервал тощо.
Первісну функцію (невизначений інтеграл) також можна розглядати як нескінченнозначну функцію, оскільки вона визначена з точністю до сталої інтегрування.
У комплексному аналізі та алгебрі
Характерний приклад багатозначних функцій — деякі аналітичні функції в комплексному аналізі. Неоднозначність виникає при аналітичному продовженні за різними шляхами. Також часто багатозначні функції виходять як результат взяття обернених функцій.
Наприклад, корінь n-го степеня з будь-якого ненульового комплексного числа набуває рівно значень. У комплексного логарифма число значень нескінченне, одне з них оголошено головним.
У комплексному аналізі поняття багатозначної функції тісно пов'язане з поняттям ріманової поверхні — поверхні в багатовимірному комплексному просторі, на якій дана функція стає однозначною.