Багатозначна функція

Матеріал з testwiki
Перейти до навігації Перейти до пошуку
Функція від елемента «3» набуває двох значень

Багатозна́чна фу́нкція або багатозна́чне відобра́ження — узагальнення поняття функції, що допускає наявність декількох значень функції для одного аргументу[1].

Визначення

Функція F, яка кожному елементу множини X ставить у відповідність деяку підмножину множини Y, називається багатозначною функцією[2], якщо хоча б для одного xX значення F(x) містить більше одного елемента Y.

Звичайні (однозначні) функції можна розглядати як окремий випадок багатозначних, у яких значення складається рівно з одного елемента.

Приклади

Найпростіший приклад — двозначна функція квадратного кореня з додатного числа, у неї два значення, що розрізняються знаком. Наприклад, квадратний корінь з 16 має два значення — +4 і 4.

Інший приклад — обернені тригонометричні функції (наприклад, арксинус) — оскільки значення прямих тригонометричних функцій повторюються з періодом 2π або π, то значення обернених функцій багатозначні («нескінченнозначні»), всі вони мають вигляд φ+2kπ або φ+kπ, де k — довільне ціле число.

Багатозначні функції незручно використовувати у формулах, тому з їх значень нерідко виділяють одне, яке називають головним. Для квадратного кореня це додатне значення, для арксинуса — значення, що потрапляє в інтервал [π2,π2] тощо.

Первісну функцію (невизначений інтеграл) також можна розглядати як нескінченнозначну функцію, оскільки вона визначена з точністю до сталої інтегрування.

У комплексному аналізі та алгебрі

Характерний приклад багатозначних функцій — деякі аналітичні функції в комплексному аналізі. Неоднозначність виникає при аналітичному продовженні за різними шляхами. Також часто багатозначні функції виходять як результат взяття обернених функцій.

Наприклад, корінь n-го степеня з будь-якого ненульового комплексного числа набуває рівно n значень. У комплексного логарифма число значень нескінченне, одне з них оголошено головним.

У комплексному аналізі поняття багатозначної функції тісно пов'язане з поняттям ріманової поверхні — поверхні в багатовимірному комплексному просторі, на якій дана функція стає однозначною.

Див. також

Примітка

Шаблон:Reflist

Література

Шаблон:Перекласти