Квант магнітного потоку

Матеріал з testwiki
Версія від 09:51, 30 грудня 2023, створена imported>Білецький В.С.
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Шаблон:UniboxКва́нт магні́тного пото́ку одинична порція магнітного потоку, яка може існувати всередині надпровідникового зразка з тороїдальною топологією.

CODATA значення Одиниці
Шаблон:Math0 2.067833 848 … × 10−15 Вб
Шаблон:MathJ 483597,8484… × 109 Гц/В
Шаблон:MathJ-90 483597,9 × 109 Гц/В

Квант магнітного потоку дорівнює

Φ0=πc|e|=2.067833636107 Гс·см2  (СГС)     та     Φ0=π|e|=2.0678336361015 В·с (СІ).

де  — приведена стала Планка, c — швидкість світла, e — елементарний заряд. Величина, обернена до кванту магнітного потоку називається сталою Джозефсона

KJ=1/Φ0=483597.9×109 Гц·В-1 (СІ).

Явище квантування магнітного потоку в надпровідниках було теоретично передбачене Фріцом Лондоном в 1948 році й зафіксовано експериментально в 1961 році американськими [1] та німецькими [2] дослідниками.

Фізична природа

Електричний струм в надпровідному колі протікає без втрат і не загасає. Проте квантова природа надпровідного стану вимагає, щоб при обході кола хвильова функція надпровідника змінювала свою фазу на число кратне 2π. Ця вимога призводить до квантування струму в колі. Квантується також і магнітне поле, яке створене цим струмом. Якщо дискретні значення струму залежать від довжини кола, то магнітний потік завжди пропорційний певній сталій, яка отримала назву кванту магнітного потоку.

Φ=nΦ0,

де n — певне квантове число, яке може мати лише цілі значення.

Квантовані значення струму[3]:

J=πc2|e|Ln  (СГС)     та     J=π|e|Ln   (СІ)

де L — індуктивність зразку.

Математичний опис

Файл:Flux quantization dp.png

Густина надпровідного струму у випадку надпровідника у магнітному полі може бути подана у вигляді (розгляд задачі проводиться в системі СІ) узагальненого другого рівняння Лондонів:

𝐣=em(θ2e𝐀)ρ,

де 𝐀- векторний потенціал магнітного поля, θ - фаза хвильової функції, m - маса електрона, а ρ=|Ψ(𝐫)|2 - густина носіїв надпровідного струму.

Нехай надпровідник з отвором знаходиться при температурі вищій за критичну, тобто він знаходиться в нормальному а не в надпровідному стані. Якщо до нього прикласти зовнішнє магнітне поле перпендикулярно до площини отовору, а потім знизити температуру нижче критичної, то магнітне поле виштовхнеться із тіла надпровідника й лише в отоворі залишиться деякий потік магнітного поля.

Якщо проінтегрувати рівняння для надпровідного струму вздовж деякого замкненого контуру Γ, що охоплює отвір, але проходить достатньо далеко від краю отвору (на відстані, що значно перевищує лондонівську глибину проникнення), то, маючи на увазі, що 𝐣=0 в силу віддаленості від країв надпровідника, отримуємо наступне співвідношення:

Γθd𝐥=2eΓ𝐀d𝐥.

Оскільки Γ𝐀d𝐥=Φ є за визначенням магнітним потоком через площу, яку охоплює контур Γ, отримуємо

Φ=Φ02πΓθd𝐥=nΦ0.

де n=0,1,2,3,...- число квантів магнітного потоку. З вищенаведеного випливає, що функція θ(𝐫) є багатозначною, оскільки вона змінюється на певну величину після кожного обходу по контуру Γ. З іншого боку хвильова функція надпровідного конденсату Ψ(𝐫)=ρeiθ(𝐫) є однозначною функцією. Якщо ж при обході контуру та поверненні у вихідну точку фаза θ(𝐫) може змінитися на величину, кратну числу 2π, то хвильова функція загалом залишиться незмінною, оскільки e2iπn=1.

Переписавши вираз для надпровідного стуму та проінтегрувавши його по контуру можна ввести величину

Φ2eΓθd𝐥=Φ+m2e2Γ𝐣d𝐥|Ψ(𝐫)|2,

яку Фріц Лондон назвав флюксоїдом. Для розглянутого вище випадку надпровідникового зразку з тороїдальною геомерією флюксоїд збігається з потоком магнітного поля через поверхню внаслідок занулення струму 𝐣 в другому доданку. Якщо цей струм не можна вважати рівним нулеві, зокрема в надпровідниках II-ого роду, то слід враховувати обидва доданки.

Застосування

Вимірювання для ефекту Джозефсона

Ефект квантування магнітного потоку є основою функціонування Шаблон:Iw (надпровідних квантових інтерферометрів) - приладів, за допомогою яких вимірюють магнітні поля, зокрема надзвичайно слабкі.

При нестаціонарному ефекті Джозефсона наявність напруги на переході V0 приводить до випромінювання з кутовою частотою:

ω0=eV0.

Якщо на перехід подати змінний сигнал, то на вольт-амперній характеристиці можна виявити східці. Іншими словами, частота випромінювання ω0 повиння бути кратною до частоти зовнішнього змінного сигналу ω, тобто:

ω0=nω 

n=1,2,... 

Таким чином, значення напруг, при яких з'являються східці, рівні:

V0n=neω

n=1,2,... .

Точки, поставлені після n=1,2, слід сприймати цілком серйозно, оскільки n може досягати досить великих значень - понад сотню. Точність вимірювання повністю визначається точністю задання напруги V0, оскільки точність вимірювання частот на сьогоднішній день є надзвичайно висока.

Магнітне поле може проникати в Шаблон:Iw також у вигляді квантів Φ0. Результатом такого проникнення є утворення так званих джозефсонівських вихорів або Шаблон:Iw, що є солітонами.

Див. також

Література


Посилання

Шаблон:Physics-stub