Повна категорія

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Категорія називається повною у малому, якщо у ній будь-яка (мала) діаграма має границю. Дуальне поняття — коповна у малому категорія, тобто та, у якій будь-яка мала діаграма має кограницю. Аналогічно визначається кінцева повнота і взагалі α-повнота для будь-якого регулярного кардинала α. З них усіх найбільш використовуваною є повнота у малому, тому категорії, повні у малому, називаються просто повними. Відзначимо, що це не означає існування границь взагалі усіх (не обов'язково малих) діаграм, бо така категорія з необхідністю була б передпорядком.

Категорія, яка є одночасно повною і коповною, називається біповною.

Приклади

Властивості

  • Якщо у категорії існує термінальний об'єкт, будь-яка пара паралельних морфізмів f,g:ab має урівнювач і для будь-яких двох об'єктів існує добуток, то категорія є скінченно повною. Якщо крім того інсують усі малі добутки об'єктів, то категорія повна у малому.
  • Дуально, якщо у категорії існує початковий об'єкт, для будь-яких двох паралельних морфізмів існує коурівнювач та існує [кодобуток]] усіх пар об'єктів, то категорія є скінченно коповною.
  • (Фрейд) Якщо мала категорія повна у малому, то вона є передпорядком.
  • Якщо категорія C повна у малому, то для будь-якої малої категорії A будь-який функтор F:AC має праве розширення Кана RanKF за будь-яким функтором K:AB, при чому будь-яке таке розширення Кана є поточковим. Твердження явно випливає з подання поточкового розширення Кана як границі.

Література

  • С. Маклейн Категории для работающего математика, — Шаблон:М.: ФИЗМАТЛИТ, 2004. — 352 с — ISBN 5-9221-0400-4.
  • Р. Голдблатт Топосы. Категорный анализ логики, — Шаблон:М.: Мир, 1983. — 487 с.
  • Шаблон:Книга-ру