Напівпрямий добуток
Шаблон:Теорія груп Напівпрямий добуток — конструкція в теорії груп, що дозволяє будувати нову групу за двома групами і , і дією групи в просторі групи , що зберігає її групову структуру.
Напівпрямий добуток груп і над звичайно позначається .
Конструкція
Нехай задана дія групи на просторі групи із збереженням її групової структури. Це означає, що задано гомоморфізм групи в групу автоморфізмів групи . Автоморфізм групи , що відповідає елементу із при гомоморфізмі позначимо . Як група — напівпрямий добуток груп і над гомоморфізмом — береться множина з бінарної операцією , яка діє за правилом:
- для довільних , .
Властивості
- Групи і природно вкладені в , причому — нормальна підгрупа в .
- Кожен елемент однозначно розкладемо у добуток , де і — елементи груп і відповідно. (Ця властивість виправдовує назву групи як напівпрямого добутку груп і .)
- Задана дія груп на групі збігається з дією на спряженнями (в групі ).
Будь-яка група з властивостями 1-3 ізоморфна групі (властивість універсальності напівпрямогу добутку груп).
Приклад
Група діє на (розглядається як адитивна група відповідного кільця) чотирма різними способами:
- , де — фіксований ненульовий елемент , , .
Відповідно, на множині можна ввести 4 структури групи — напівпрямого добутку:
Можна показати, що останні дві групи ізоморфні, а решта — ні, а також, що ці приклади перераховують всі групи порядку 20, що містять елемент порядку 4 (при цьому використовуються теореми Силова).
Подібним чином напівпрямі добутки груп використовуються для класифікації скінченних груп.