Теорема Куранта — Фішера
Перейти до навігації
Перейти до пошуку
Теорема Куранта — Фішера — теорема про властивість ермітового оператора в гільбертовому просторі функцій. Також називається теоремою про мінімакс[1].
Формулювання
- — лінійний самоспряжений оператор, що діє в скінченновимірному комплексному або дійсному просторі,
- — одинична сфера,
- — ортонормований базис простору , що складається з власних векторів оператора ,
- — -е власне значення оператора і
- — -вимірний підпростір .
Доведення
, — -вимірний підпростір , — лінійна оболонка векторів . . Звідки випливає, що . Нехай і . Оскільки то . З іншого боку: так як то
Рівність досягається при .
Додатково
Очевидно, що .
Див. також
Примітки
Джерела
- Шаблон:Гельфанд.ЛінійнаАлгебра.укр
- Шаблон:Гантмахер.Теорія матриць
- Шаблон:Ланкастер.Теорія матриць
- Прасолов Задачи и теоремы линейной алгебры.
- Ильин, Ким. Линейная алгебра и аналитическая геометрия
- ↑ Ли Цзун-дао. Математические методы в физике. — М.: Мир, 1965. — c. 190