Ядро інтегрального оператора
Ядро́м інтегра́льного опера́тора (ядро Фредгольма[1]) — функція двох аргументів , яка визначає деякий інтегральний оператор рівністю
де — простір з мірою , а належить деякому простору функцій, визначених на .
Приклади
- Ядро називають -ядром, якщо воно задовольняє умові:
де — вимірна на функція.
Такі ядра є основним предметом розгляду теорії інтегральних рівнянь.
- Ядро, що задовольняє умові:
- при
називають ядром Вольтерри.
- Симетричне ядро — ядро, для якого виконується тотожність .
- Якщо виконується тотожність , де — комплексно спряжене до , таке ядро називають ермітовим.
- Якщо ядро допускає розклад вигляду:
де — дві системи лінійно незалежних інтегрованих з квадратом функцій (-функцій), таке ядро називають ядром Шаблон:Нп — Ґурса або PG-ядром.
Пов'язані визначення
- Спектром ядра називають множину його власних значень.
Теорема Мерсера
Теорема Шаблон:Iw про розкладання ядра стверджує:Шаблон:Теорема