Щільний порядок

Матеріал з testwiki
Версія від 15:03, 21 червня 2024, створена imported>Олюсь
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Щільний порядок — бінарне відношення між елементами множин у частковому або лінійному порядку (позначимо його <) на множині X, коли для всіх x і y з X, для яких виконується x < y, існує елемент z в X, такий що x < z < y. Іншими словами, порядок називають щільним, коли немає сусідніх елементів. Оскільки між будь-якими двома елементами щільного порядку є ще хоча б один, будь-який відрізок щільного порядку нескінченний[1].

Приклад

Щільною впорядкованою множиною є дійсні числа і раціональні числа зі звичайним порядком. З іншого боку, звичайний порядок цілих чисел щільним не є.

Єдиність

Георг Кантор довів, що дві будь-які щільні лінійно впорядковані зліченні множини без нижньої і верхньої меж ізоморфні відносно впорядкуванняШаблон:Sfn. Зокрема, існує ізоморфізм зі збереженням порядку між раціональними числами та іншими щільними зліченними множинами, включно з двійково-раціональними числами й алгебричними числа. У Шаблон:Не перекладеноШаблон:Sfn використовується доведення цього результату.

Для визначення ізоморфізмів порядку між квадратичними алгебричними числами і раціональними числами, а також між раціональними числами і двійково-раціональними числами можна використати функцію Мінковського.

Узагальнення

Бінарне відношення R вважається щільним, якщо для всіх пов'язаних відношенням R x і y, є z, таке що x і z, а також z і y пов'язані відношенням R. Формально:

x y xRy(z xRzzRy).

У термінах Шаблон:Не перекладено R із собою, умову щільності можна альтернативно виразити як RRRШаблон:Sfn.

Достатніми умовами до того, що бінарне відношення R на множині X матиме щільний порядок, є випадки коли:

Жодна з них не є необхідною. Непорожнє щільне відношення не може бути антитранзитивним.

Строго частковий порядок < є щільним порядком тоді і тільки тоді, коли < є щільним відношенням. Щільне відношення є Шаблон:Не перекладено, коли воно також транзитивне.

Див. також

Примітки

Шаблон:Reflist

Джерела

Шаблон:Теорія порядку