Граф Клебша

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Шаблон:Граф У теорії графів граф Клебша — один з двох взаємодоповняльних графів, що мають 16 вершин. Один з них має 40 ребер і є 5-регулярним графом, інший має 80 ребер і є 10-регулярним графом. 80-реберний варіант — це Шаблон:Iw 5-го порядку. 1968 року Шаблон:Iw[1] назвав його графом Клебша, зважаючи на його зв'язок із конфігурацією прямих поверхні четвертого порядку, яку відкрив 1868 року німецький математик Альфред Клебш. 40-реберний варіант — це Шаблон:Iw 5 порядку. Він відомий також під назвою граф Грінвуда — Глізона після роботи Грінвуда і Глізона[2], в якій вони використали цей граф для обчислення числа Рамсея R(3,3,3) = 17[2][3][4].

Побудова

Шаблон:Iw 5-го порядку (5-регулярний граф Клебша) можна побудувати, додавши ребра між протилежними вершинами графа 4-вимірного гіперкуба (В n-вимірному гіперкубі пара вершин протилежна, якщо найкоротша відстань між ними містить n ребер). Його можна побудувати також із графа 5-вимірного гіперкуба стягуванням кожної пари протилежних вершин.

Ще одна побудова, що дає той самий граф, полягає у створенні вершини для кожного елемента скінченного поля GF (16) і з'єднанні двох вершин ребром, якщо різниця відповідних елементів поля є кубом[5].

Шаблон:Iw 5-го порядку (10-регулярний граф Клебша) — це доповнення 5-регулярного графа. Його можна також побудувати з вершин 5-вимірного гіперкуба, з'єднавши пари вершин, між якими відстань Геммінга дорівнює рівно два. Ця побудова утворює дві підмножини по 16 вершин у кожній, не пов'язаних між собою. Обидва отриманих графи ізоморфні 10-регулярному графу Клебша.

Властивості

5-регулярний граф Клебша є сильно регулярним графом 5-го степеня з параметрами (v,k,λ,μ)=(16,5,0,2)[6]. Його доповнення, 10-регулярний граф Клебша, теж сильно регулярний[7][4].

5-регулярний граф Клебша є гамільтоновим, непланарним і не ейлеровим. Обидва графи є 5-вершинно зв'язними і 5-реберно-зв'язними. Підграф, породжений десятьма вершинами, які не є сусідами будь-якої вершини в цьому графі, ізоморфний графу Петерсена.

Ребра повного графа K16 можна розділити на три незв'язних копії 5-регулярного графа Клебша. Оскільки граф Клебша не містить трикутників, це показує, що існує триколірне розфарбування без трикутників ребер графа K16. Таким чином, число Рамсея R(3,3,3), що описує найменше число вершин у повному графі за триколірного розфарбовування без трикутників, не може бути меншим від 17. Грінвуд і Глізон використали цю побудову як частину свого доведення рівності R(3,3,3) = 17[2][8].

5-регулярний граф Клебша є графом Келлера розмірності два, і входить до сімейства графів, використовуваних для пошуку покриття евклідових просторів великої розмірності гіперкубами, що не мають спільних граней.

Алгебричні властивості

Характеристичний многочлен 5-регулярного графа Клебша — це (x+3)5(x1)10(x5). Отже, граф Клебша є цілим графом — його спектр складається тільки з цілих чисел[4]. Граф Клебша — єдиний граф із таким характеристичним многочленом.

5-регулярний граф Клебша є графом Келі з групою автоморфізмів порядку 1920, ізоморфною групі Коксетера D5. Як у будь-якому графі Келі, група автоморфізмів діє на його вершини транзитивно, роблячи його вершинно-транзитивним. Фактично він є симетричним графом, а тому він реберно-транзитивний і дистанційно-транзитивний.

Галерея

Примітки

Шаблон:Reflist

  1. J. J. Seidel, Strongly regular graphs with (−1,1,0) adjacency matrix having eigenvalue 3, Lin. Alg. Appl. 1 (1968) 281—298.
  2. 2,0 2,1 2,2 Шаблон:Стаття
  3. Шаблон:Стаття
  4. 4,0 4,1 4,2 Шаблон:Cite web
  5. Шаблон:Cite web
  6. Шаблон:Стаття
  7. . Шаблон:Cite web
  8. Шаблон:Стаття