Чудові точки трикутника

Матеріал з testwiki
Версія від 11:56, 26 вересня 2024, створена imported>Анатолій Чередник (Ізо-точки трикутника)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Чудові точки трикутника — точки, розташування яких однозначно визначається трикутником і не залежить від того, в якому порядку беруться сторони і вершини трикутника.

Зазвичай вони розташовані всередині трикутника, але це не обов'язково. Зокрема, точка перетину висот може лежати поза трикутником.

Енциклопедія чудових точок трикутника (Шаблон:Lang-en) містить понад 32 тис. (станом на 2019) «центрів трикутника» — точок, пов'язаних з геометрією трикутника.

Деякі приклади чудових точок трикутника

Точки перетину:

Центроїд
Інцентр
Ортоцентр
Центр описаного кола

Якщо хоча б дві з цих чотирьох чудових точок трикутника збігаються, то трикутник є правильним.

Точки перетину:

Центр зовнівписаного кола

Точки перетину відрізків, що з'єднують вершини трикутника:

Точка Жергонна
Точка Нагеля
  • з відповідними вільними вершинами рівносторонніх трикутників, побудованих на сторонах трикутника (назовні) — перша точка Торрічеллі;
  • з відповідними вільними вершинами правильних трикутників, побудованих всередину трикутника — друга точка Торрічеллі;
  • з відповідними вільними вершинами трикутників, подібних до початкового трикутника і побудованих на його сторонах — точки Брокара.

Мінімаксні точки трикутника

Мінімаксними (екстремальними) точками трикутника називаються точки, в яких досягається мінімум деякої функції, наприклад, суми степенів відстаней до сторін або вершин трикутника[1].

Мінімаксними точками трикутника є:

  • точка перетину трьох медіан, що має найменшу суму квадратів відстаней до вершин трикутника (теорема Ляйбніца);
  • точка перетину трьох медіан трикутника, єдина точка трикутника така, що проведені через неї три чевіани ділять своїми кінцями сторони трикутника на шість відрізків. При цьому добуток довжин трьох з цих шести відрізків, які не мають спільних кінців, максимальний[2];
  • перша точка Торрічеллі, що має найменшу суму відстаней до вершин трикутника з кутами не більше 120 градусів;
  • точка Лемуана, що має найменшу суму квадратів відстаней до сторін трикутника;
  • основи висот гострокутного трикутника утворюють ортотрикутник, який має найменший периметр з усіх трикутників, вписаних у даний трикутник.

Ізо-точки трикутника

Ізо-точками є точки трикутника, що дають будь-які рівні параметри трьох трикутників, які утворюються при з'єднанні ізо-точки відрізками з трьома вершинами трикутника[3]. В результаті утворюється фігура типу «око дракона» (див. рис.)

Око дракона

Ізо-точки трикутника, що утворюють фігуру типу «око дракона»:

Ізо-точки трикутника, що утворюють фігуру типу «Трилистник (вузол)»:

  • Центр Шпікера S є точкою перетинів прямих AX, BY і CZ, де XBC, YCA і ZAB подібні, рівнобедрені та однаково розташовані, побудовані на сторонах трикутника ABC зовні, що мають один і той самий кут біля основи arctg[tg(A/2)tg(B/2)tg(C/2)][5].
  • Перша точка Наполеона N1, як і центр Шпікера, є точкою перетинів прямих AX, BY і CZ, де XBC, YCA і ZAB подібні, рівнобедрені та однаково розташовані, побудовані на сторонах трикутника ABC зовні, що мають один і той самий кут біля основи 30.
  • Тут треба було б перерахувати всі точки, що лежать на гіперболі Кіперта.

Із-точки трикутника, що утворюють фігуру типу «Квітка традесканції» наступні:

  • точка перетину медіан утворює трьома малими відрізками чевіан три чотирикутники з рівними площами;
  • точка перетину бісектрис утворює трьома перпендикулярами до трьох сторін трикутника три чотирикутники — дельтоїди з двома однаковими у всіх суміжними сторонами. Інша пара рівних суміжних сторін у загальному випадку у всіх різна. У всіх трьох дельтоїдів є пара рівних протилежних кутів 90. Вони — вписано-описані чотирикутники.
  • Три кола, проведені всередині трикутника через точку Мікеля, перетинають сторони трикутника в трьох точках. Три хорди, проведені через точку Мікеля, і три точки перетину трьох кіл з трьома різними сторонами трикутника, утворюють рівні кути зі сторонами.

Примітки

Шаблон:Примітки

Література

  • Бевз Г. П. Геометрія трикутника. Навчально-методичний посібник для загальноосвітніх навчальних закладів. — К.:Генеза, 2005. — 120 с.: іл.
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.: Учпедгиз, 1962.
  • Енциклопедія для дітей. Т. 11. Математика/Голов. ред. М. Д. Аксьонова. — М: Аванта +, 2001. — 688 c.: іл.
  • Шаблон:Книга
  • Шаблон:Стаття

Посилання

Шаблон:Перекласти

  1. Шаблон:Статья
  2. Зетель С. И. Новая геометрия треугольника. Пособие для учителей. — 2-е изд. — М.: Учпедгиз, 1962. — С. 12, задача.
  3. Шаблон:Стаття
  4. Шаблон:Cite web
  5. 5,0 5,1 Odenhal, 2010, с. 35—40.