Секвенційно компактний простір

Матеріал з testwiki
Версія від 01:39, 28 березня 2022, створена imported>InternetArchiveBot (Виправлено джерел: 3; позначено як недійсні: 0.) #IABot (v2.0.8.6)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Топологічний простір називається секвенційно компактним, якщо з будь-якої послідовності в ньому можна виділити збіжну підпослідовність.

Приклади та властивості

Простір дійних чисел в стандартній топології не є секвенційно компактним: послідовність sn=n не містить збіжної підпослідовності. Якщо топологічний простір є метричним простором, тоді він є секвенційно компактним тоді й лише тоді коли він є компактним. Але в загальному випадку існують секвенційно компактні простори, які не є компактними (перший незліченний ординал в порядковій топології), та компактні простори які не є секвенційно компактними (добуток континуальної кількості замкнених одиничних інтервалів).

Пов'язані поняття

В метричних просторах, поняття компактності, секвенційної компактності, зліченної компактності та слабко зліченної компактності є еквівалентними.

Див. також

Джерела