Зрізаний додекаедр

Файл:Truncated dodecahedron.stl
Зрі́заний додека́едр — напівправильний багатогранник, належить до архімедових тіл, що складається із 12 правильних десятикутників і 20 правильних трикутників, 60 вершин і 90 ребер. Двоїстий до зрізаного додекаедра многогранник — триакісікосаедр.
Отримати даний багатогранник можна внаслідок зрізання всіх вершин правильного додекаедра на третину від первісної довжини ребра, внаслідок чого п'ятикутні площини стають десятикутними, а їхні вершини перетворюються на трикутники.
Використовується в ізохорно гіперболічному заповненні простору теселяцією, об'ємами зрізаного додекаедра з дисфеноїдно вершинною фігуристикою.
Ортогональні проєкціїФормули
Знаючи довжину ребра зрізаного додекаедра — a - отримуємо:
| Математичний опис | ||
|---|---|---|
| Об'єм | ||
| Площа поверхні | ||
Прямокутна система координат
Наступні декартові координати визначають вершини зрізаного додекаедра з довжиною ребра 2(τ-1), і з центром в початку координат —

: (0, ±1/τ, ±(2+τ)): (±(2+τ), 0, ±1/τ): (±1/τ, ±(2+τ), 0): (±1/τ, ±τ, ±2τ): (±2τ, ±1/τ, ±τ): (±τ, ±2τ, ±1/τ): (±τ, ±2, ±τ2): (±τ2, ±τ, ±2): (±2, ±τ2, ±τ)
де τ = (1 + √5) / 2 є золотим січенням (також пишеться φ).
Графічне зображення
Сферична плитка
Зрізаний додекаедр можна подати у вигляді сферичної плитки, і спроєктувати на площину у вигляді стереографічної проєкції. Ця проєкція буде конформною, зберігаючи кути, але не площини чи ребра багатогранника. Прямі лінії на сфері проєктуватимуться як дуги на площині.
центровано десятикутником |
центровано трикутником | ||
| Сферична плитка | Стереографічна проєкція (лицева) | ||
|---|---|---|---|
Пов'язані багатогранники
Джерела
- Шаблон:MathWorld
- Пчелінцев В. О. Кристалографія, кристалохімія та мінералогія. Навчальний посібник для студентів вищих навчальних закладів. Суми: Вид-во СумДУ, 2008, — 232с.
- Гордєєва Є. П., Величко В. Л. Нарисна геометрія. Багатогранники (правильні, напівправильні та зірчасті). Частина І. Навчальний посібник. Луцьк: Редакційно-видавничий відділ ЛДТУ, 2007, — 198с Шаблон:Webarchive.
- П. С. Александрова, А. И. Маркушевича и А. Я. Хинчина. Многоугольники и многогранники. Энциклопедия элементарной математики. Москва: Государственное издательство физико-математической литературы, 1963, — 568с.
