Кільце множин

Матеріал з testwiki
Версія від 07:30, 14 березня 2022, створена imported>InternetArchiveBot (Виправлено джерел: 1; позначено як недійсні: 0.) #IABot (v2.0.8.6)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Непорожня система множин називається кільцем множин, якщо вона є замкнута щодо операцій об'єднання та перетину множин.

Тобто A,B виконується:

  1. AB
  2. AB

Дана алгебраїчна структура не є алгебраїчним кільцем, а є дистрибутивною ґраткою.

Вищенаведене визначення задовільняють системи із однієї множини — сінглетони. Щоб уникнути цього, в теорії міри, кільцем множин називають непорожню систему множин, що є замкнутою відносно двох операцій:

  • операцій об'єднання та різниці множин:
  1. AB
  2. AB
  1. AB
  2. AB

Обидва визначення є строгішими ніж початкове, а також еквівалентними оскільки виражаються:

  • перше через друге:
    • AB=(AB)(AB)
    • AB=A(AB)
  • друге через перше:
    •  AB=A(AB)
    • AB=(AB)(BA)

Властивості

A(BC)=(AB)(AC)

Поле множин

Полем множин — називається кільце множин замкнуте відносно доповнення множин.

Поле множин ще називають алгеброю множин, хоча алгеброю множин частіше називають ту частину теорії множин, що вивчає властивості теоретико-множинних операцій.

Насправді, поле множин з точки зору абстрактної алгебри не є ні алгебраїчним полем, ні алгеброю над полем, а є булевим кільцем.

Сигма-алгебра

Аналогічно визначається сигма-алгебра та дельта-алгебра (до речі, довільна дельта-алгебра є сигма-алгеброю і навпаки).

Теорема Стоуна

Шаблон:Main

  • Ґратка є дистрибутивною тоді і тільки тоді, коли вона ізоморфна деякому кільцю множин.
  • Ґратка є булевою алгеброю тоді і тільки тоді, коли вона ізоморфна деякому полю множин.

Див. також

Джерела