Ребро (геометрія)

Матеріал з testwiki
Версія від 09:01, 30 червня 2022, створена imported>SalweenBot (правопис)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Три ребра: AB, BC і CA — кожне між двома вершинами трикутника.

Багатокутник, обмежений чотирма сторонами; Цей квадрат має 4 ребра.

У багатограннику кожне ребро розділяє 2 грані, як у цьому кубі.

Кожне ребро розділяє 3 або більше граней у чотиривимірному багатограннику, як показано на цій проєкції тесеракту.
Многокутник ABCDEF з позначеними червоним кольором ребрами BC і DE

Ребро́ — в геометрії одновимірний відрізок, що з'єднує дві сусідні нульвимірні вершини многокутника, багатогранника або політопа довільної вимірності.[1] В многокутнику ребро ще називають стороною.[2] В багатограннику або, більш загально, у політопі ребро є відрізком в якому дві грані з'єднуються.[3] Відрізок, який з'єднує дві вершини та проходить всередині або зовні не є ребром, натомість його називають діагоналлю.

Замкнута послідовність ребер на площині утворює многокутник або грань багатогранника.

Ребра в графах

В теорії графів, ребра — це абстрактний об'єкт, що з'єднує дві вершини графу, на відміну від багатокутника і багатогранника, ребра якого мають конкретне геометричне подання у вигляді лінійного сегмента. Однак, будь-який поліедр може бути представлений у вигляді його кістяку, а саме графом, вершини якого є вершинами многогранника, і у геометричному вигляді[4]. З іншого боку, графи, які є скелетами тривимірних багатогранників, можна охарактеризувати по теоремі Штайніца як з'єднані трьома вершинами планарні графи[5].

Число ребер багатогранника

Будь-який опуклий багатокутник має Ейлерову характеристику:

VE+F=2

де V — число вершин, Е — число ребер і F — число граней. Це рівняння відоме як формула Ейлера для багатогранника. Таким чином, число ребер на 2 менше, ніж сума числа вершин і граней. Наприклад, куб має 8 вершин і 6 граней, 12 ребер.

Належність граням

У полігоні два ребра зустрічаються у кожній вершині; в цілому за Шаблон:Нп існує принаймні n граней в кожній вершині n-вимірного опуклого багатогранника[6]. Аналогічно у багатограннику рівно дві грані відповідає кожному ребру[7], у той час як у вищих вимірностях ребру може відповідати три грані або й більше.

Альтернативна термінологія

У теорії багатомірних опуклих багатогранників грані або сторони n-вимірного багатогранника є одними з його (n − 1)-вимірною особливостей, що хребет — це (n − 2)-вимірних просторових об'єктів, і пік це (n − 3)-вимірний просторовий об'єкт. Таким чином, ребрами полігону є його грані, ребрами 3-вимірного опуклого багатогранника є його хребти, а піки 4-вимірного багатогранника є його вершини[8].

Примітки

Шаблон:Reflist

Див. також

Посилання

  1. Шаблон:Citation.
  2. Weisstein, Eric W. «Polygon Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonEdge.html Шаблон:Webarchive
  3. Weisstein, Eric W. «Polytope Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolytopeEdge.html Шаблон:Webarchive
  4. Шаблон:Citation.
  5. Шаблон:Citation. See in particular Theorem 3, p. 176 Шаблон:Webarchive.
  6. Шаблон:Citation.
  7. Шаблон:Citation.
  8. Шаблон:Citation.