Лінійчата поверхня

Матеріал з testwiki
Версія від 10:37, 26 червня 2022, створена imported>InternetArchiveBot (Виправлено джерел: 2; позначено як недійсні: 0.) #IABot (v2.0.8.8)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку
Лінійчатий гелікоїд
Лінійчатий гіперболоїд

В диференціальній геометрії, Лінійчата поверхня — поверхня, утворена рухом прямої лінії. Прямі, що належать цій поверхні, називаються прямолінійними твірними, а кожна крива, що перетинає всі прямолінійні твірні називається напрямною кривою. Якщо p(u) — радіус-вектор напрямної, a m=m(v) — одиничний вектор твірної, що проходить через p(u) , то радіус-вектор лінійчатої поверхні є

r=p(u)+vm(u),

де v — координата точки на твірній.

Властивості

  • Лінійчата поверхня характеризується тим, що її асимптотична мережа — напівгеодезична.
  • Теорема Бельтрамі. Лінійчату поверхню завжди можна і до того ж єдиним чином зігнути так, що довільна лінія на ній стане асимптотичною.
  • Теорема Бонні. Якщо лінійчата поверхня F, що не розгортається, згинається в лінійчату поверхню F, то або їх твірні відповідають одна одній, або обидві вони вигинаються в квадрику, на якій мережа, що відповідає сімействам твірних — асимптотична.
  • Єдина мінімальна лінійчата поверхня — гелікоїд.
  • Лінійчата поверхня обертання — однопорожнинний гіперболоїд, який може вироджуватись в циліндр, конус або площину.
  • Якщо всі прямолінійні твірні лінійчатої поверхні паралельні одній площині, то вона є поверхнею Каталана.

Див. також

Посилання

Шаблон:Портал

Шаблон:Без джерел Шаблон:Геометрія-доробити