Теорії міцності

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Тео́рії мі́цності — це методики визначення на основі низки теоретичних і практичних досліджень критерію міцності (граничного напружено-деформованого стану) матеріалу, що перебуває в умовах складного напруженого стану. При побудові теорії міцності вводять гіпотезу про переважний вплив на міцність матеріалу того чи іншого фактора і вважають, що порушення міцності матеріалу при будь-якому напруженому стані відбудеться тільки тоді, коли цей фактор досягне певного граничного значення. Це граничне значення фактора, що визначає міцність, знаходять з випробувань на просте розтягання або стискання, а іноді — на кручення.

Отже, введення критерію міцності дає змогу порівняти цей складний напружений стан, з простим, наприклад, з одновісним розтягненням і знайти при цьому таке еквівалентне (розрахункове) напруження, яке в обох випадках має однаковий коефіцієнт запасу.

Класичні теорії міцності

Критерій найбільших нормальних напружень (перша (І) теорія міцності) — гіпотеза, за якою вважається, що найбільший вплив на міцність справляє значення найбільшого нормального напруження.

 σ1[σ]

Цю гіпотезу пов'язують з іменем Г. Галілея або В. Ренкіна. Гіпотеза нехтує впливом двох інших головних напружень і не враховує появу пластичних деформацій; дає задовільні результати для крихких матеріалів (скло, кераміка, гіпс, бетон тощо).

Критерій найбільших лінійних деформацій (друга (ІІ) теорія міцності) — гіпотеза, яка за основу бере найбільшу за абсолютним значенням лінійну деформацію. Еквівалентне напруження в цьому випадку:

 σ1ν(σ2+σ3)[σ]

Гіпотезу запропонував Е. Маріотт (Шаблон:Lang-en) у 1682, надалі розвинув Б. Сен-Венан. Експериментально гіпотеза отримала слабке підтвердження, використовувалась на практиці наприкінці XIX ст.

Критерій найбільших дотичних напружень (третя (ІІІ) теорія міцності) — знаний як критерій текучості Треска (названо в честь французького вченого Анрі Треска). Згідно з цією теорією припускають, що граничний стан у загальному випадку настає тоді, коли найбільше дотичне напруження τmax досягає небезпечного значення [τ]. Еквівалентним напруженням за третьою теорією є різниця алгебраїчно найбільшого і найменшого головних напружень:

 τmax=σ1σ32[τ].

Третя теорія міцності добре підтверджується дослідами для пластичних матеріалів, у яких допустимі напруження розтягання і стискання однакові. Недоліком цієї теорії є те, що вона не враховує проміжного головного напруження σ2, яке, згідно з дослідами робить вплив (хоч і не значний) на міцність матеріалу.

Критерій питомої потенціальної енергії деформації (четверта (IV) теорія міцності). Як критерій міцності у цьому разі вибирають кількість питомої потенціальної енергії формозміни, накопиченої здеформованим об'єктом. Згідно з цією теорією, небезпечний стан (текучість) у загальному випадку напруженого стану виникає тоді, коли питома потенціальна енергія формозміни досягне свого критичного значення. Еквівалентне напруження за четвертою теорією:

12[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2] [σ].

Ця теорія, гіпотезу якої висунув Д. Максвелл (1856), знайшла свій розвиток у XX ст. в працях М. Губера (1903)[1] та Р. Мізеса (1913)[2] ще має назву — критерій текучості Губера-Мізеса. Досліди добре підтверджують четверту теорію для пластичних матеріалів, що однаково працюють на розтягнення і стискання.

Теорія міцності Мора (ще називають гіпотезою Кулона-Мора або п'ятою (V) теорією міцності) — гіпотеза за якою міцність при будь-якому виді напруженого стану забезпечується за умови, що круг Мора не виходить за межі огинальних кругів, побудованих на допустимих напруженнях при одновісному розтягу і стиску.

σ1[σ+][σ]σ3[σ+].

Теорія застосовується до матеріалів, що проявляють різний опір розтягуванню і стисканню (чавун, бетон тощо). Для випадку, коли допустимі напруження при розтягу [σ+] і стиску [σ] є однаковими, теорія Мора збігається з третьою теорією міцності.

Примітки

Шаблон:Reflist

Джерела

  1. Huber, M. (1903). Specific work of strain as a measure of material effort, Towarzystwo Politechniczne, Czas. Techniczne, Lwów.
  2. von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys., vol. 1, pp. 582–592.