Теорема Аміцура — Левицького
Теорема Аміцура — Левицького — твердження про рівність нулю стандартного многочлена степеня від довільних матриць порядку . Прямий наслідок цього результату — матриці порядку утворюють кільце з поліноміальними залежностями з мінімальним ступенем тотожності, що дорівнює .
Теорема вперше доведена ізраїльськими математиками Шімшоном Аміцуром і Яковом Левицьким у 1950 році.
Згодом було дано кілька принципово інших доведень. Бертран Костант у 1958 році вивів теорему Аміцура — Левицького з теореми Кошуля — Самельсона про примітивні когомології алгебр Лі. Річард Сван у 1963 році дав просте доведення на основі теорії графів.
Юрій Размислов у 1974 році побудував доведення, що спирається на теорему Гамільтона — Келі. Шмуель Россет у 1976 році подав коротке доведення, що використовує зовнішню алгебру векторного простору розмірності.
Означення та формулювання
Шаблон:Якір Стандартним многочленом степеня називається многочлен:
- ,
де сума береться за всіма елементами симетричної групи . Тут позначає знак перестановки і елементи не комутують між собою.
Теорема Аміцура — Левицького стверджує, що для довільних матриць порядку з елементами із деякого комутативного кільця R, стандартний многочлен від цих матриць є рівним нулю:
- .
Доведення
Тут подано доведення Размислова на основі такого твердження із лінійної алгебри:
Лема
Нехай C — комутативна -алгебра з одиницею і — матриця для якої Тоді також
Доведення леми
Згідно теореми Гамільтона — Келі матриця A є коренем свого характеристичного многочлена:
- Але на основі тотожностей Ньютона, характеристичний многочлен можна записати де всі многочлени мають раціональні коефіцієнти і нульові вільні члени окрім З рівності нулю слідів степенів матриці отримуємо, що і а тому
Доведення теореми
Якщо всі елементи деякого кільця R задовольнять рівності то для довільного комутативного кільця A також елементи тензорного добутку задовольняють цій же рівності. Справді, оскільки є полілінійним (тобто для всіх змінних) достатньо довести, що вказана рівність виконується при підстановці Дійсно,
- .
Оскільки і то з попереднього випливає, що твердження достатньо довести для матриць із .
Розглянемо тепер зовнішню алгебру над векторним простором над розмірності 2n із базисом Підалгебра цієї алгебри елементами якої є елементи парних компонент у градації є комутативною.
Нехай — довільні елементи з і позначимо
Тоді і
Також можна записати
Для стандартних многочленів виконуються рівності
Звідси можна записати:
Отож кожен доданок у виразі для матриць можна записати як комутатор двох матриць. З огляду на те, що слід комутатора двох матриць дорівнює нулю, то сліди всіх цих доданків, а тому і сліди всіх матриць є рівними нулю. Згідно леми тоді також і звідси