Тензор Річчі

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Тензор Річчі, названий на честь Грегоріо Річчі-Курбастро, задає один із способів вимірювання кривини многовиду, тобто ступеня відмінності геометрії многовиду від геометрії плоского евклідового простору. Тензор Річчі, точно так само як метричний тензор, є симетрична білінійна форма на дотичному просторі ріманового многовиду. Грубо кажучи, тензор Річчі вимірює деформацію об'єму, тобто ступінь відмінності n-вимірних областей n-вимірного многовиду від аналогічних областей евклідового простору.

Зазвичай позначається Ric або Rc.

Означення

Нехай (M,g) — n-вимірний ріманів многовид, а TpM — дотичний простір до M в точці p. Для будь-якої пари ξ,ηTpM дотичних векторів в точці p, тензор Річчі Ric(ξ,η), за означенням, відображає (ξ,η) в слід лінійного автоморфізма TpMTpM, що заданий тензором кривини Рімана R:

ζR(ζ,η)ξ

Якщо на многовиді задані локальні координати, то тензор Річчі можна розкласти за компонентами:

Ric=Rijdxidxj

де Rij=Rkikj. — слід тензора Рімана в координатному представлені.