Седеніони

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Седеніони — елементи 16-вимірної алгебри, що будується з алгебри октоніонів за процедурою Келі — Діксона. Кожен седеніон — це лінійна комбінація елементів 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 та e15, що формують базу векторного простору седеніонів.

Як і у випадку октоніонів, множення седеніонів не є ні комутативним, ні асоціативним. У множині седеніонів є одиничний елемент, елементи, що мають обернені, але є також і дільники нуля, тобто, існують ненульові елементи, добуток яких дає нуль: наприклад, (e3+e10)×(e6e15).

Множина седеніонів позначається 𝕊.

Таблиця множення елементів наведена нижче:

× 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 −1 e3 e2 e5 e4 e7 e6 e9 e8 e11 e10 e13 e12 e15 e14
e2 e2 e3 −1 e1 e6 e7 e4 e5 e10 e11 e8 e9 e14 e15 e12 e13
e3 e3 e2 e1 −1 e7 e6 e5 e4 e11 e10 e9 e8 e15 e14 e13 e12
e4 e4 e5 e6 e7 −1 e1 e2 e3 e12 e13 e14 e15 e8 e9 e10 e11
e5 e5 e4 e7 e6 e1 −1 e3 e2 e13 e12 e15 e14 e9 e8 e11 e10
e6 e6 e7 e4 e5 e2 e3 −1 e1 e14 e15 e12 e13 e10 e11 e8 e9
e7 e7 e6 e5 e4 e3 e2 e1 −1 e15 e14 e13 e12 e11 e10 e9 e8
e8 e8 e9 e10 e11 e12 e13 e14 e15 −1 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 e11 e10 e13 e12 e15 e14 e1 −1 e3 e2 e5 e4 e7 e6
e10 e10 e11 e8 e9 e14 e15 e12 e13 e2 e3 −1 e1 e6 e7 e4 e5
e11 e11 e10 e9 e8 e15 e14 e13 e12 e3 e2 e1 −1 e7 e6 e5 e4
e12 e12 e13 e14 e15 e8 e9 e10 e11 e4 e5 e6 e7 −1 e1 e2 e3
e13 e13 e12 e15 e14 e9 e8 e11 e10 e5 e4 e7 e6 e1 −1 e3 e2
e14 e14 e15 e12 e13 e10 e11 e8 e9 e6 e7 e4 e5 e2 e3 −1 e1
e15 e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 −1

Шаблон:Math-stub Шаблон:Quantity