Послідовність цілих чисел

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Послідовність цілих чисел — у математиці — це впорядкований список цілих чисел.

Послідовність цілих чисел можна задати в явному вигляді формулою n-го члена, або неявно, за допомогою відношення між її членами.

Наприклад, послідовність Фібоначчі (0, 1, 1, 2, 3, 5, 8, 13, …) можна задати так:

Приклади

До цілочисельних послідовностей, які отримали власні назви, належать: Шаблон:Div col

Шаблон:Div col end

Обчислювані та визна́чні послідовності

Цілочисельна послідовність є обчислюваною послідовністю, якщо існує алгоритм, який за заданим n обчислює an для всіх n>0. Набір обчислюваних цілих послідовностей є незліченним. Множина всіх цілих послідовностей є незліченною (з потужністю, що дорівнює потужності континууму), і тому не всі цілі послідовності є обчислюваними.

Хоча деякі цілочисельні послідовності мають визначення, не існує систематичного способу визначення того, що означає для цілочисельної послідовності бути визна́чною у Всесвіті або в будь-якому абсолютному (незалежному від моделі) сенсі.

Нехай множина M є Шаблон:Нп з теорії множин ZFC. Транзитивність M передбачає, що цілі числа і цілі послідовності всередині M є фактично цілими числами й послідовностями цілих чисел. Цілочисельна послідовність є Шаблон:Не перекладено послідовністю відносно M, якщо існує деяка формула P(x) мовою теорії множин, з однією вільною змінною та без параметрів, яка є істинною в M для даної цілої послідовності та хибною в M для всіх інших цілих послідовностей. У кожній такій M існують визна́чні цілі послідовності, які не є обчислюваними, такі як послідовності, які кодують Шаблон:Нп обчислюваних множин.

Для деяких транзитивних моделей M у ZFC кожна послідовність цілих чисел у M визна́чна відносно M; для інших визна́чними є лише деякі цілі послідовності (Hamkins et al. 2013). Немає систематичного способу визначити в M самого набору послідовностей, визна́чних відносно M, і цього набору може навіть не існувати в деяких M. Аналогічно, відображення з набору формул, які визначають цілочисельні послідовності в М у цілочисельні послідовності, які вони визначають, може не бути визна́чним в М і може не існувати в M. Проте, в будь-якій моделі, що має таке відображення визна́чності, деякі цілочисельні послідовності в моделі не будуть визна́чними відносно моделі (Hamkins et al. 2013).

Якщо M містить всі цілочисельні послідовності, то множина цілочисельних послідовностей, визначених в M, існуватиме в M і буде зліченною і зліченною в M.

Повні послідовності

Послідовність цілих чисел називається повною послідовністю, якщо кожне натуральне число можна виразити як суму значень членів послідовності, використовуючи кожне значення не більше одного разу.

Див. також

Література

Посилання

Шаблон:Commonscat

Шаблон:Послідовності й ряди Шаблон:Бібліоінформація