Кільце Ейнштейна

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Шаблон:Гравітаційне лінзування Кільце Ейнштейна (іноді також кільце Ейнштейна — Хвольсона, на честь Ореста Хвольсона) — яскраве кільце, яке утворюється, коли світло від галактики чи зорі проходить повз масивний об'єкт на шляху до Землі. Завдяки гравітаційному лінзуванню світло відхиляється, створюючи враження, що воно надходить з різних місць. Якщо джерело, лінза та спостерігач знаходяться на одній прямій, світло виглядає як кільце.

Вступ

Гравітаційне лінзування передбачено загальною теорією відносності[1]. За цією теорією, світло поширюється не по прямій лінії, а викривляється масивними тілами, які збурюють простір-час, — це явище називається гравітаційним лінзуванням. Кільце Ейнштейна — це окремий випадок гравітаційного лінзування, який відповідає розташуванню джерела, лінзи та спостерігача точно на одній прямій. Це призводить до осевої симетрії задачі, спричиняючи зображення кільцеподібної форми[2].

Геометрія повного кільця Ейнштейна, створеного гравітаційною лінзою

Розмір кільця Ейнштейна визначається радіусом Ейнштейна. Виражений у радіанах, він дорівнює

θ1=4GMc2DLSDSDL,

де

G гравітаційна стала,
M — маса лінзи,
c — швидкість світла,
DL — Шаблон:Не перекладено до лінзи,
DS — Шаблон:Не перекладено до джерела, а
DLS — Шаблон:Не перекладено між лінзою та джерелом[3].

Для космологічних відстаней в загальному випадку DLSDSDL.

Історія

Гравітаційно лінзована галактика SDP.81, знята ALMA[4].

Викривлення світла гравітуючим тілом було передбачено Альбертом Ейнштейном у 1912 році, за кілька років до публікації загальної теорії відносності в 1916 році (Ренн та ін. 1997). Ефект кільця вперше був згаданий в науковій літературі Орестом Хвольсоном у короткій статті в 1924 році, у якій він говорив про «гало-ефект» гравітації, коли джерело, лінза та спостерігач знаходяться майже на одній прямій[5]. Ейнштейн зазначив цей ефект у 1936 році в статті, що була викликана листом чеського інженера Р. В. Мандла, але заявив, що

...немає ніякої надії на пряме спостереження цього явища. По-перше, навряд чи ми колись наблизимось достатньо близько до такої центральної лінії. По-друге, кут β буде недосяжним для розрізнювальної здатності наших інструментів.

(У цьому твердженні β — це радіус Ейнштейна, який зараз позначається як

θ1,

як у виразі вище.)

Однак Ейнштейн розглядав лише ймовірність спостереження кілець Ейнштейна, створених зорями, яка є низькою — ймовірність спостереження кілець, створених масивнішими тілами, такими як галактики чи чорні діри, вища, оскільки кутовий розмір кільця Ейнштейна збільшується з масою лінзи.

Перше повне кільце Ейнштейна, позначене B1938+666, було виявлено в результаті співпраці астрономів Манчестерського університету та космічного телескопа Габбл у 1998 році[6].

Спостережень зорі, яка б утворювала кільце Ейнштейна на іншій зорі, поки не було, але існує ймовірність 45 % того, що це станеться на початку травня 2028 року, коли Альфа Центавра А пройде між нами та далекою червоною зорею[7].

Відомі кільця Ейнштейна

«Смайлик» або «Чеширський кіт» зображення скупчення галактик (SDSS J1038+4849) і гравітаційного лінзування («кільце Ейнштейна»), виявлені міжнародною командою вчених[8], отримані за допомогою HST[9].

Сьогодні відомі сотні гравітаційних лінз. Кілька з них є частковими кільцями Ейнштейна з діаметром до кутової секунди, однак, оскільки розподіл маси в лінзах не є ідеально осесиметричним або джерело, лінза та спостерігач не знаходяться ідеально на одній прямій, ідеальних кілець Ейнштейна поки не спостерігалось. Більшість кілець виявлено в радіодіапазоні. Ступінь повноти, необхідний для того, щоб лінзоване зображення класифікувалося як кільце Ейнштейна, ще не визначено.

Перше кільце Ейнштейна було відкрито Гьюіттом та ін. (1988) під час спостережень радіоджерела MG1131+0456 за допомогою Дуже великого масиву. Це спостереження показало, що квазар лінзується ближчою галактикою на два окремих, але дуже схожих зображення, розтягнуті навколо лінзи у майже повне кільце[10]. Ці подвійні зображення є ще одним можливим проявом того, що джерело, об'єктив і спостерігач не ідеально вирівняні.

Галактичне кільце Ейнштейна, відкрите телескопом Джеймс Вебб.

Першим відкритим повним кільцем Ейнштейна було B1938+666, яке знайшли Кінг та ін. (1998) на космічному телескопі Габбл[6][11]. Гравітаційна лінза B1938+666 є старою еліптичною галактикою, а зображення, яке ми бачимо через лінзу, є темною карликовою галактикою-супутником, яку інакше ми не змогли б побачити за допомогою сучасних технологій[12].

У 2005 році комбінація Слоунівського цифрового огляду неба і космічного телескопа Габбла була використана в огляді Sloan Lens ACS (SLACS), щоб знайти 19 нових гравітаційних лінз, 8 з яких були кільцями Ейнштейна[13]. Ці 8 кілець показані на рисунку поруч. Станом на 2009 рік у цьому дослідженні було виявлено 85 гравітаційних лінз, але точна кількість кілець Ейнштейна не вказувалось[14]. Це дослідження відповідає за більшість нещодавніх відкриттів кілець Ейнштейна в оптичному діапазоні. Ось кілька прикладів знайдених в ньому кілець:

  • FOR J0332-3557, відкритий у 2005 році[15], відомий своїм високим червоним зсувом, що дозволяє використовувати його для спостережень раннього Всесвіту.
  • «Космічна підкова» — часткове кільце Ейнштейна від особливо великої яскраво-червоної галактики, для якої гравітаційною лінзою слугує галактика LRG 3-757. Відкрита у 2007 році Бєлокуровим та ін.[16]
  • SDSSJ0946+1006, «подвійне кільце Ейнштейна», було відкрито Рафаелем Ґавацці та Томассо Треу у 2008 році[17]. Воно відоме наявністю кількох кілець, які спостерігаються через ту саму гравітаційну лінзу.

Іншим відомим прикладом є радіо- і рентгенівське кільце Ейнштейна навколо PKS 1830-211, яке є надзвичайно потужним у радіодіапазоні[18]. Його виявили за допомогою рентгенівського дослідження Варша Гупта та ін. в на рентгенівському космічному телескопі Чандра[19]. Воно також примітно тим, що це перший випадок лінзування квазара спіральною галактикою, розташованою майже перпендикулярно до променя зору[20].

Galaxy MG1654+1346 має кільце в радіодіапазоні. Зображення в кільці є зображенням радіопелюстки квазара, відкритого в 1989 році Лангстоном та ін.[21]

Додаткові кільця

SDSSJ0946+1006 — подвійне кільце Ейнштейна. Авторство: HST / NASA / ESA

За допомогою космічного телескопа Габбл Рафаель Гавацці з Інституту космічного телескопа і Томмазо Треу з Університету Каліфорнії в Санта-Барбарі знайшли подвійне кільце. Воно викликане світлом від трьох галактик на відстані 3, 6 і 11 мільярдів світлових років. Такі кільця допомагають зрозуміти розподіл темної матерії, темної енергії, природу далеких галактик і кривизну Всесвіту. Шанси знайти таке подвійне кільце навколо масивної галактики становлять 1 до 10 000. Дослідження 50 таких подвійних кілець забезпечило б точніше вимірювання вмісту темної матерії у Всесвіті та визначення рівняння стану темної енергії з точністю до 10 відсотків[22].

Нижче наведено моделювання, що зображує збільшення шварцшильдівської чорної діри в площині Чумацького Шляху між нами та центром галактики. Перше кільце Ейнштейна є найбільш викривленою областю зображення і показує галактичний диск. Потім масштаб збільшується, показуючи серію з 4 додаткових кілець, дедалі тонших і ближчих до тіні чорної діри. Вони являють собою кілька зображень галактичного диска. Перше і третє відповідають точкам, які знаходяться позаду чорної діри (з позиції спостерігача) і відповідають тут яскраво-жовтій області галактичного диска (близько до центру галактики), тоді як друге і четверте відповідають зображенням об'єктів, які знаходяться позаду спостерігача, які виглядають синішими, оскільки відповідна частина галактичного диска тут тонша і, отже, тьмяніша.

Галерея

Журнали

Новини

Рекомендована література

Примітки