GERT

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Метод графічної оцінки й аналізу (Шаблон:Lang-en) — альтернативний ймовірнісний метод мережевого планування, застосовується у випадках організації робіт, коли наступні роботи можуть починатися після завершення тільки деякого числа з попередніх, причому не всі роботи, представлені на мережевій моделі, повинні бути виконані для завершення проєкту. Використовується, в основному, для планування інноваційних проєктів.

Метод розроблений в США в 1966 році доктором Шаблон:Нп[1][2] з Університету Пердью та Шаблон:Lang-en.

Основу застосування методу GERT становить використання альтернативних мереж, званих GERT-мережами. Вони дозволяють більш адекватно планувати складні процеси виробництва в тих випадках, коли важко або неможливо (з об'єктивних причин) однозначно визначити, які саме роботи і в якій послідовності повинні бути виконані для досягнення мети проєкту (тобто існує багатоваріантність реалізації проєкту). Розрахунок GERT-мереж, що моделюють реальні процеси, надзвичайно складний. Програмне забезпечення для обчислення мережевих моделей такого типу в даний час не поширене.

GERT- мережі

GERT-мережа є окремим випадком мережі стохастичної структури. Системи GERT застосовуються для моделювання промислових комплексів, для дослідження ймовірносно-часових характеристик локальних мереж і мереж передачі даних. Перспективними напрямками застосування системи GERT в інформаційних системах є:

Мінуси

Складність отримання закону розподілу вихідної величини і відносно мала розмірність використовуваних моделей.

Процес функціонування системи можна розглядати через послідовні переходи з одного стану в інший С1, С2, … (число станів скінченно або нескінченно). Кожному з них приписана певна ймовірність рк; ймовірності послідовності проходження станів визначається за правилом множення.
P{(Ci0,Ci1,...,Cin)}=pi0pi1...pin
Кожній парі (Cj, Ck) відповідає умовна ймовірність Pjk; якщо стан Cj досягнуто на деякому кроці, то ймовірність переходу в стан Ск на наступному кроці дорівнює Pjk.
P{(Cj0,Cj1,...,Cjn)}=aj0pj0j1...pjn2jn1pjn1jn
Тут ак ймовірності попадання в стан Ск з початкового стану. Для GERT-мережі обов'язково вводиться початкова дуга, що виходить з вузла джерела s, і кінцева дуга, що входить у вузол рядків t. Тому ймовірності Aj0 = Pjn-1 jn = 1, а вираз приймає вигляд:
P{(Cj0,Cj1,...,Cjn)}=pj0j1...pjn2jn1pjn2jn1

Перехід системи зі стану в стан пов'язується з виконанням деякої операції, описуваної випадковою величиною з відомим законом розподілу. У GERT-моделях стану системи відповідають вузли графа, а вконуючими в системі операціями, дуги (гілки) графа. Випадкові величини, приписані дуг GERT-мережі, повинні мати властивість адитивності по дугах будь-якого шляху.

Основними кроками при використанні GERT-мережі є:

  • Подання системи у вигляді стохастичной мережі G = (N,) з N GERT-вузлами і А дугами;
  • Визначення умовної ймовірності і виробляючої функції моментів кожної дуги;
  • Обчислення W-функції кожної дуги;
  • Визначення топологічного рівняння Мейсона для розглянутої GERT-мережі

1ST(L1)+...+(1)nST(Ln)=0, де ST-суми еквівалентних коефіцієнтів пропускання для всіх можливих петель r-го порядку.

Див. також

Примітки

Шаблон:Reflist

Посилання

  • В. М. Аньшин, И. В. Демкин, И. М. Никонов, И. Н. Царьков. Модели управления портфелем проектов в условиях неопределенности. — М. : 2007. Шаблон:Ref-ru

Шаблон:Інформатика-доробити Шаблон:Немає ілюстрацій Шаблон:Програмна інженерія

  1. Шаблон:Cite web
  2. Modeling and Analysis Using Q-GERT Networks A. Alan B. Pritsker, 2nd Edition, Wiley, 1979 Шаблон:ISBN