Функція Ейлера
Перейти до навігації
Перейти до пошуку

Функція Ейлера , де — натуральне число, — це цілочисельна функція, яка показує кількість натуральних чисел, що не є більшими за і взаємно простих з ним.Шаблон:Sfn
Функцію Ейлера можна подати у вигляді так званого добутку Ейлера:
де — просте число.
Функція Ейлера широко застосовується в теорії чисел та криптографії. Зокрема відіграє значну роль у визначенні алгоритма шифрування RSA.
Деякі значення функції
| +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0+ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | |
| 10+ | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 |
| 20+ | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 |
| 30+ | 8 | 30 | 16 | 20 | 16 | 24 | 12 | 36 | 18 | 24 |
| 40+ | 16 | 40 | 12 | 42 | 20 | 24 | 22 | 46 | 16 | 42 |
| 50+ | 20 | 32 | 24 | 52 | 18 | 40 | 24 | 36 | 28 | 58 |
| 60+ | 16 | 60 | 30 | 36 | 32 | 48 | 20 | 66 | 32 | 44 |
| 70+ | 24 | 70 | 24 | 72 | 36 | 40 | 36 | 60 | 24 | 78 |
| 80+ | 32 | 54 | 40 | 82 | 24 | 64 | 42 | 56 | 40 | 88 |
| 90+ | 24 | 72 | 44 | 60 | 46 | 72 | 32 | 96 | 42 | 60 |
Властивості
- , якщо — просте число;Шаблон:Sfn
- , якщо і взаємно прості. Тобто Функція Ейлера мультиплікативна;Шаблон:Sfn
- , якщо і взаємно прості. Докладніше: Теорема Ейлера.Шаблон:Sfn
- , , , якщо — найменше спільне кратне, a — найбільший спільний дільник.
Асимптотичні відношення
- де — деяка константа;