Сильне псевдопросте число

Матеріал з testwiki
Перейти до навігації Перейти до пошуку

Ймовірно просте число — це число, яке проходить тест простоти. Сильне ймовірно просте число — це число, яке проходить сильну версію тесту простоти. Сильне псевдопросте число — це складене число, яке проходить сильну версію тесту простоти.

Усі прості числа проходять цей тест, але незначна частка складених чисел також цей тест проходить, що робить їх «хибно простими».

На відміну від псевдопростих чисел Ферма, для яких існують числа, псевдопрості за всіма взаємно простими основами (числа Кармайкла), не існує складених чисел, сильних псевдопростих за всіма основами.

Формальне визначення

Формально, непарне складене число n = d • 2s + 1 з непарним d називається сильним псевдопростим числом (Ферма) за основою a, якщо виконується одна з умов:

ad1modn

або

ad2r1modn для деякого 0r<s.

(Якщо число n задовольняє вищенаведеним умовам і ми не знаємо, чи просте воно чи ні, точніше називати його сильним ймовірно простим за основою a. Якщо ж ми знаємо, що n не просте, можна використовувати термін сильне псевдопросте число.)

Визначення тривіально виконується, якщо Шаблон:Math, так що ці тривіальні випадки часто виключаються.

Річард Ґай помилково дав визначення тільки з першою умовою, але йому не задовольняють усі прості числаШаблон:Sfn.

Властивості сильних псевдопростих чисел

Сильне псевдопросте число за основою a завжди є Шаблон:Не перекладено, Шаблон:Не перекладеноШаблон:Sfn і псевдопростим Ферма за цією основою, але не всі псевдопрості Ейлера і Ферма є сильними псевдопростими. Числа Кармайкла можуть бути сильними псевдопростими за деякими основами, наприклад, 561 є сильними псевдопростим за основою 50, але не за всіма основами.

Складене число n є сильним псевдопростим за максимум чвертю всіх основ, менших від nШаблон:SfnШаблон:Sfn. Таким чином, немає «сильних чисел Кармайкла», чисел, які є сильними псевдопростими для всіх основ. Отже, якщо задано випадкову основу, ймовірність, що число буде сильним псевдопростим за цією основою, не перевищує 1/4, що використовується в поширеному тесті Міллера — Рабіна. Проте, АрноШаблон:Sfn навів 397-значне складене число, яке є сильним псевдопростим за будь-якою основою, меншою від 307. Одним зі способів уберегтися від оголошення таких чисел ймовірно простими полягає в комбінуванні тесту на сильне можливо просте число з тестом на псевдопросте число Люка, як у тесті Бейлі — Померанса — Селфриджа — Вогстаффа.

Існує нескінченно багато сильних псевдопростих за будь-якою конкретною основоюШаблон:Sfn.

Приклади

Перші сильні псевдопрості за основою 2

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, … (Шаблон:OEIS).

За основою 3

121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, … (Шаблон:OEIS).

За основою 5

781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, … (Шаблон:OEIS).

За основою 4 див. Шаблон:OEIS2C, а за основами від 6 до 100 див. послідовності від Шаблон:OEIS2C до Шаблон:OEIS2C.

Якщо перевіряти наведені вище умови за кількома основами, отримуємо більш потужний тест на простоту, ніж за використання тесту за однією основою. Наприклад, існує тільки 13 чисел, менших від 25·109, які є сильними псевдопростими за основами 2, 3 і 5 одночасно. Їх перераховано в таблиці 7 у статті Померанца і СелфриджаШаблон:Sfn. Найменше таке число — 25326001. Це означає, що при n меншому від 25326001, якщо n є сильним ймовірно простим числом за основами 2, 3 і 5, число n є простим.

Число 3825123056546413051 є найменшим числом, що одночасно є сильним псевдопростим за 9 основами 2, 3, 5, 7, 11, 13, 17, 19 і 23Шаблон:Sfn. Так що при n меншому від 3825123056546413051, якщо n є сильним ймовірно простим за цими 9 основами, то n є простим.

За обережного вибору основи, що не є простою, можна побудувати навіть кращі тести. Наприклад, не існує складених чисел <264, сильних псевдопростих за всіма сімама основами 2, 325, 9375, 28178, 450775, 9780504 і 1795265022[1].

Найменше сильне псевдопросте за основою n

n Найменше n Найменше n Найменше n Найменше
1 9 33 545 65 33 97 49
2 2047 34 33 66 65 98 9
3 121 35 9 67 33 99 25
4 341 36 35 68 25 100 9
5 781 37 9 69 35 101 25
6 217 38 39 70 69 102 133
7 25 39 133 71 9 103 51
8 9 40 39 72 85 104 15
9 91 41 21 73 9 105 451
10 9 42 451 74 15 106 15
11 133 43 21 75 91 107 9
12 91 44 9 76 15 108 91
13 85 45 481 77 39 109 9
14 15 46 9 78 77 110 111
15 1687 47 65 79 39 111 55
16 15 48 49 80 9 112 65
17 9 49 25 81 91 113 57
18 25 50 49 82 9 114 115
19 9 51 25 83 21 115 57
20 21 52 51 84 85 116 9
21 221 53 9 85 21 117 49
22 21 54 55 86 85 118 9
23 169 55 9 87 247 119 15
24 25 56 55 88 87 120 91
25 217 57 25 89 9 121 15
26 9 58 57 90 91 122 65
27 121 59 15 91 9 123 85
28 9 60 481 92 91 124 25
29 15 61 15 93 25 125 9
30 49 62 9 94 93 126 25
31 15 63 529 95 1891 127 9
32 25 64 9 96 95 128 49

Примітки

Шаблон:Reflist

Література

Шаблон:Refbegin

Шаблон:Refend Шаблон:Класи натуральних чисел