Дисперсія світла

Матеріал з testwiki
Перейти до навігації Перейти до пошуку
Завдяки дисперсії біле світло можна розкласти в спектр за допомогою призми

Дисперсія світла — залежність показника заломлення (або діелектричної проникності) середовища від частоти світла. Внаслідок зміни показника заломлення змінюється також довжина хвилі.

k(ω)=2πλ(ω)=n(ω)ωc,

де k(ω) — хвильове число, λ(ω) — довжина хвилі, n(ω) — показник заломлення, ω — кутова частота, c — швидкість світла.

Відношення

vph=ωk=cn

називають фазовою швидкістю.

Нормальна й аномальна дисперсії

Здебільшого показник заломлення зростає зі збільшенням частоти. Таке зростання називають нормальною дисперсією. При нормальній дисперсії червоне світло заломлюється слабше, ніж блакитне.

Аномальна дисперсія — зменшення показника заломлення зі збільшенням частоти — спостерігається на частотах, що близькі до смуг інтенсивного поглинання.

Фізична природа явища

Середовище реагує на зміну зовнішнього електричного поля зміною наведеної в ньому поляризації. Поляризація виникає завдяки зміщенню зв'язаних зарядів, наприклад, зміщенню електронів відносно ядер атомів. Процеси зміщення не відбуваються миттєво, а вимагають певного часу. Крім того, зміщення можуть бути різними за величиною, й ставати особливо значними тоді, коли частота зміни зовнішнього поля потрапляє в резонанс із коливаннями, власної частоти системи.

Коли електричне поле світлової хвилі, яка розповсюджується в середовищі, змінюється повільно, середовище встигає повністю відреагувати на зміну поля. Якщо ж електричне поле змінюється дуже швидко, електрони не встигають відслідковувати його зміни. Цим пояснюються різні значення показника заломлення при різних частотах електромагнітних хвиль.

Властивості та прояви

Одним з наочних проявів дисперсії є розкладання білого світла при проходженні його крізь призму (дослід Ньютона). Різниця фазових швидкостей для променів із різною довжиною хвилі при поширенні в прозорому оптичному середовищі зумовлює дисперсію (у вакуумі швидкість світла завжди однакова, незалежно від довжини хвилі випромінювання).

Дисперсія світла дозволила вперше впевнено довести той факт, що біле світло складається з світла інших довжин хвиль.

Явище дисперсії можна спостерігати при заломленні сонячного світла у краплях води, які утворюються в атмосфері. Воно супроводжується розкладом на кольорові промені. Цим пояснюється утворення веселки.

Дисперсією світла пояснюється і хроматична аберація — недолік лінзи, пов'язаний з тим, що зображення предмета має кольорові краї. Це пояснюється тим, що фокусна відстань лінзи для променів різних кольорів є різною.

Узагальнене формулювання високих порядків дисперсії – оптика Лаха—Лагерра

Опис хроматичної дисперсії за допомогою пертурбативного підходу через коефіцієнти Тейлора підходить для оптимізації задач, де необхідно збалансувати дисперсію від декількох різних систем. Наприклад, у лазерних підсилювачах імпульси спочатку розтягуються в часі, щоб уникнути оптичного пошкодження кристалів. Потім, у процесі посилення енергії, імпульси накопичують неминучу лінійну та нелінійну фазу, проходячи через різні матеріали. Нарешті, імпульси стискаються у різних типах компресорів. Щоб скинути будь-які залишкові вищі порядки в накопиченої фазі, окремі порядки дисперсії зазвичай вимірюються і балансуються. Для однорідних систем такий пертурбативний опис часто не потрібний (наприклад, поширення імпульсу в хвилеводах чи оптичних волокнах). Дисперсійні порядки зводяться до аналітичних рівнянь, які аналогічні узагальненим перетворенням Лаха—Лагера[1][2].

Порядки дисперсії визначаються розкладанням фази Тейлора або хвильового вектора.

φ(ω)=φ |ω0+ φω|ω0(ωω0)+12 2φω2|ω0(ωω0)2 ++1p! pφωp|ω0(ωω0)p+

k(ω)=k |ω0+ kω|ω0(ωω0)+12 2kω2|ω0(ωω0)2 ++1p! pkωp|ω0(ωω0)p+

Виробничі дисперсії для хвильового вектора k(ω)=ωcn(ω) і фази φ(ω)=ωc𝑂𝑃(ω) може бути виражається як:

pωpk(ω)=1c(pp1ωp1n(ω)+ωpωpn(ω)) , pωpφ(ω)=1c(pp1ωp1𝑂𝑃(ω)+ωpωp𝑂𝑃(ω))(1)

Похідні будь-якої функції, що диференціюється f(ω|λ) у просторі довжин хвиль або частот визначаються через перетворення Лаха як:

pωpf(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmf(λ) , pλpf(λ)=(1)p(ω2πc)pm=0p𝒜(p,m)ωmmωmf(ω)(2)

Матричні елементи перетворення є коефіцієнтами Лаха: 𝒜(p,m)=p!(pm)!m!(p1)!(m1)!

Записане для дисперсії групової швидкості GDD, наведене вище вираз стверджує, що постійна довжина хвилі GGD матиме нульові вищі порядки. Вищими порядками, отриманими з GDD, є:

pωpGDD(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmGDD(λ)

Підстановка рівняння (2), вираженого для показника заломлення n або оптичного шляху OP, рівняння (1) призводить до аналітичних виразів для порядків дисперсії. Загалом дисперсія pth порядку POD є перетворенням типу Лагерра негативного другого порядку:

POD=dpφ(ω)dωp=(1)p(λ2πc)(p1)m=0p(𝓅,𝓂)(λ)mdmOP(λ)dλm , POD=dpk(ω)dωp=(1)p(λ2πc)(p1)m=0p(𝓅,𝓂)(λ)mdmn(λ)dλm

Матричні елементи перетворень є беззнаковими коефіцієнтами Лагерра порядку мінус 2 і мають вигляд: (p,m)=p!(pm)!m!(p2)!(m2)!

Перші десять порядків дисперсії, записані явно для хвильового вектора:

𝐺𝐷=ωk(ω)=1c(n(ω)+ωn(ω)ω)=1c(n(λ)λn(λ)λ)=vgr1

Груповий показник заломлення ng визначається як: ng=cvgr1.

𝐺𝐷𝐷=2ω2k(ω)=1c(2n(ω)ω+ω2n(ω)ω2)=1c(λ2πc)(λ22n(λ)λ2)

𝑇𝑂𝐷=3ω3k(ω)=1c(32n(ω)ω2+ω3n(ω)ω3)=1c(λ2πc)2(3λ22n(λ)λ2+λ33n(λ)λ3)

𝐹𝑂𝐷=4ω4k(ω)=1c(43n(ω)ω3+ω4n(ω)ω4)=1c(λ2πc)3(12λ22n(λ)λ2+8λ33n(λ)λ3+λ44n(λ)λ4)

𝐹𝑖𝑂𝐷=5ω5k(ω)=1c(54n(ω)ω4+ω5n(ω)ω5)=1c(λ2πc)4(60λ22n(λ)λ2+60λ33n(λ)λ3+15λ44n(λ)λ4+λ55n(λ)λ5)

𝑆𝑖𝑂𝐷=6ω6k(ω)=1c(65n(ω)ω5+ω6n(ω)ω6)=1c(λ2πc)5(360λ22n(λ)λ2+480λ33n(λ)λ3+180λ44n(λ)λ4+24λ55n(λ)λ5+λ66n(λ)λ6)

𝑆𝑒𝑂𝐷=7ω7k(ω)=1c(76n(ω)ω6+ω7n(ω)ω7)=1c(λ2πc)6(2520λ22n(λ)λ2+4200λ33n(λ)λ3+2100λ44n(λ)λ4+420λ55n(λ)λ5+35λ66n(λ)λ6+λ77n(λ)λ7)

𝐸𝑂𝐷=8ω8k(ω)=1c(87n(ω)ω7+ω8n(ω)ω8)=1c(λ2πc)7(20160λ22n(λ)λ2+40320λ33n(λ)λ3+25200λ44n(λ)λ4+6720λ55n(λ)λ5+840λ66n(λ)λ6++48λ77n(λ)λ7+λ88n(λ)λ8)

𝑁𝑂𝐷=9ω9k(ω)=1c(98n(ω)ω8+ω9n(ω)ω9)=1c(λ2πc)8(181440λ22n(λ)λ2+423360λ33n(λ)λ3+317520λ44n(λ)λ4+105840λ55n(λ)λ5+17640λ66n(λ)λ6++1512λ77n(λ)λ7+63λ88n(λ)λ8+λ99n(λ)λ9)

𝑇𝑒𝑂𝐷=10ω10k(ω)=1c(109n(ω)ω9+ω10n(ω)ω10)=1c(λ2πc)9(1814400λ22n(λ)λ2+4838400λ33n(λ)λ3+4233600λ44n(λ)λ4+1693440λ55n(λ)λ5++352800λ66n(λ)λ6+40320λ77n(λ)λ7+2520λ88n(λ)λ8+80λ99n(λ)λ9+λ1010n(λ)λ10)

У явному вигляді, записані для фази φ, перші десять порядків дисперсії можуть бути виражені як функція довжини хвилі за допомогою перетворення Лаха (рівняння (2)) у вигляді:

pωpf(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmf(λ) , pλpf(λ)=(1)p(ω2πc)pm=0p𝒜(p,m)ωmmωmf(ω)


φ(ω)ω=(2πcω2)φ(ω)λ=(λ22πc)φ(λ)λ

2φ(ω)ω2=ω(φ(ω)ω)=(λ2πc)2(2λφ(λ)λ+λ22φ(λ)λ2)

3φ(ω)ω3=(λ2πc)3(6λφ(λ)λ+6λ22φ(λ)λ2+λ33φ(λ)λ3)

4φ(ω)ω4=(λ2πc)4(24λφ(λ)λ+36λ22φ(λ)λ2+12λ33φ(λ)λ3+λ44φ(λ)λ4)

5φ(ω)ω5=(λ2πc)5(120λφ(λ)λ+240λ22φ(λ)λ2+120λ33φ(λ)λ3+20λ44φ(λ)λ4+λ55φ(λ)λ5)

6φ(ω)ω6=(λ2πc)6(720λφ(λ)λ+1800λ22φ(λ)λ2+1200λ33φ(λ)λ3+300λ44φ(λ)λ4+30λ55φ(λ)λ5 +λ66φ(λ)λ6)

7φ(ω)ω7=(λ2πc)7(5040λφ(λ)λ+15120λ22φ(λ)λ2+12600λ33φ(λ)λ3+4200λ44φ(λ)λ4+630λ55φ(λ)λ5+42λ66φ(λ)λ6+λ77φ(λ)λ7)

8φ(ω)ω8=(λ2πc)8(40320λφ(λ)λ+141120λ22φ(λ)λ2+141120λ33φ(λ)λ3+58800λ44φ(λ)λ4+11760λ55φ(λ)λ5+1176λ66φ(λ)λ6+56λ77φ(λ)λ7++λ88φ(λ)λ8) 9φ(ω)ω9=(λ2πc)9(362880λφ(λ)λ+1451520λ22φ(λ)λ2+1693440λ33φ(λ)λ3+846720λ44φ(λ)λ4+211680λ55φ(λ)λ5+28224λ66φ(λ)λ6++2016λ77φ(λ)λ7+72λ88φ(λ)λ8+λ99φ(λ)λ9)

10φ(ω)ω10=(λ2πc)10(3628800λφ(λ)λ+16329600λ22φ(λ)λ2+21772800λ33φ(λ)λ3+12700800λ44φ(λ)λ4+3810240λ55φ(λ)λ5+635040λ66φ(λ)λ6++60480λ77φ(λ)λ7+3240λ88φ(λ)λ8+90λ99φ(λ)λ9+λ1010φ(λ)λ10)

Див. також

Примітки

Шаблон:Примітки

Література

  • Шаблон:Книга
  • Електронна поляризовність фероїків: монографія / В. Й. Стадник, М. О. Романюк, Р. С. Брезвін; Львів. нац. ун-т ім. І. Франка. — Львів: ЛНУ ім. І. Франка, 2014. — 305 c. — Бібліогр.: с. 287—305.
  • В. Левін, В. Гольдштейн Проста фізика. Від атомного ядра до межі Всесвіту. — Шаблон:К. : Наш формат, 2020. — 296 с.
  • Шаблон:Стаття

Посилання

Шаблон:Physics-stub