Коваріація та кореляція

Матеріал з testwiki
Версія від 15:26, 11 серпня 2022, створена imported>Олюсь
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Шаблон:Короткий опис Шаблон:Кореляція та коваріація Шаблон:Ширше

Математичні поняття коваріа́ції (Шаблон:Lang-en) та кореля́ції (Шаблон:Lang-en) у теорії ймовірностей та статистиці дуже схожі.[1][2] Обидва описують ступінь, до якого дві випадкові величини або набори випадкових величин схильні відхилятися від своїх математичних сподівань подібним чином.

Якщо X та Y — дві випадкові величини з середніми значеннями (математичними сподіваннями) μX та μY і стандартними відхиленнями σX та σY відповідно, то їх коваріація та кореляція такі:

коваріація covXY=σXY=E[(XμX)(YμY)]
кореляція corrXY=ρXY=E[(XμX)(YμY)]/(σXσY),

тож

ρXY=σXY/(σXσY)

де E — оператор математичного сподівання. Примітно, що кореляція безрозмірнісна, тоді як коваріація має одиниці, отримувані шляхом множення одиниць цих двох величин.

Якщо Y завжди набуває тих же значень, що й X, ми маємо коваріацію змінної з самою собою (тобто σXX), яку називають дисперсією й частіше позначують через σX2, квадрат стандартного відхилення. Кореляція змінної з самою собою завжди 1 (крім виродженого випадку, коли ці дві дисперсії дорівнюють нулю, оскільки X завжди набуває одного й того ж єдиного значення, і в цьому випадку кореляції не існує, оскільки її обчислення включатиме ділення на 0). Загалом, кореляція між двома змінними дорівнює 1 (або −1), якщо одна з них завжди набуває значення, яке точно задається лінійною функцією іншої з відповідно додатним (або від'ємним) кутовим коефіцієнтом.

Хоча значення теоретичних коваріацій та кореляцій і пов’язано вищезазначеним чином, розподіли ймовірностей Шаблон:Нп цих величин жодним простим чином не пов’язано, і в загальному випадку їх потрібно розглядати окремо.

Декілька випадкових величин

За будь-якої кількості випадкових величин, що перевищує 1, ці величини можливо об’єднати у випадковий вектор, чий i-й елемент є i-ю випадковою величиною. Тоді дисперсії та коваріації можливо помістити до коваріаційної матриці, в якій елемент (i, j) є коваріацією між i-ю та j-ю випадковими величинами. Аналогічно, кореляції можливо помістити до кореляційної матриці.

Аналіз часових рядів

У випадку часового ряду, що є стаціонарним у широкому сенсі, як середні значення, так і дисперсії є сталими в часі (E(Xn+m) = E(Xn) = μX та var(Xn+m) = var(Xn), і так само для змінної Y). У цьому випадку взаємна коваріація та взаємна кореляція є функціями часової різниці:

взаємна коваріація σXY(m)=E[(XnμX)(Yn+mμY)],
взаємна кореляція ρXY(m)=E[(XnμX)(Yn+mμY)]/(σXσY).

Якщо Y є тією же змінною, що й X, то наведені вище вирази називають автоковаріацією та автокореляцією:

автоковаріація σXX(m)=E[(XnμX)(Xn+mμX)],
автокореляція ρXX(m)=E[(XnμX)(Xn+mμX)]/(σX2).

Джерела

Примітки

Шаблон:Примітки