Теорема Стоуна про представлення булевих алгебр

Матеріал з testwiki
Версія від 10:39, 15 січня 2023, створена imported>Zviribot (Cat-a-lot: Moving from Category:Теореми to Category:Математичні теореми за допомогою Cat-a-lot)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Теорема Стоуна про представлення булевих алгебр — теорема американського математика Маршала Стоуна від 1936 року, стверджує, що довільна булева алгебра є ізоморфною полю множин. Теорема є фундаментальною для розуміння булевих алгебр. Стоун сформулював її вивчаючи спектральну теорію операторів в Гільбертовому просторі.

Простори Стоуна

Довільна булева алгебра B має асоційований топологічний простір, позначається S(B), називається простором Стоуна. Точки S(B) є ультрафільтрами в B, тобто, гомоморфізмами з B в 2-елементну булеву алгебру. Топологія на S(B) генерується базисом топології

{xS(B)bx},

де b є елементом B.

Для довільної булевої алгебри B, S(B) є компактним повністю незв'язним Гаусдорфовим простором; такі простори називаються просторами Стоуна. І навпаки, для топологічного простору X, набір підмножин X що є одночасно відкритими і закритими утворюю булеву алгебру.

Теорема представлення

Довільна булева алгебра B ізоморфна алгебрі підмножин простору Стоуна S(B), які є одночасно відкритими та закритими.

Доведення потребує використання аксіоми вибору.