Узагальнена функція

Матеріал з testwiki
Версія від 16:15, 3 лютого 2025, створена imported>Олюсь
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Узагальнена фу́нкція або розподіл — математичне поняття, що узагальнює класичне поняття функції. Потреба в такому узагальненні виникає в багатьох фізичних, технічних і математичних задачах.

Поняття узагальненої функції дає можливість виразити в математично коректній формі такі ідеалізовані поняття, як густина матеріальної точки, точкового заряду, точкового диполя, (просторову) густину простого або подвійного шару, інтенсивність миттєвого джерела і т. п.

З іншого боку, у понятті узагальненої функції знаходить висвітлення той факт, що реально не можна виміряти значення фізичної величини в точці, а можна вимірювати лише її середні значення в малих околах даної точки. Таким чином, метод узагальнених функцій слугує зручним і адекватним апаратом для опису розподілів різних фізичних величин.

Узагальнені функції було введено вперше наприкінці 20-х років XX ст. Діраком у його дослідженнях із квантової механіки, де він систематично використовує поняття δ-функції та її похідних. Основи математичної теорії узагальнених функцій були закладені Соболєвим при розв'язку задачі Коші для гіперболічних рівнянь, а в 50-х роках Шварц дав систематичний виклад теорії узагальнених функцій і вказав багато застосувань.

Основні означення

Формально узагальнена функція f означається як лінійний неперервний функціонал над тим чи іншим векторним простором достатньо «хороших функцій» (так званих основних функцій) f:φ(f,φ). Важливим прикладом основного простору є простір D(n) — сукупність фінітних C-функцій (нескінченно-диференційовних) ϕ на n. Спряжений простір до D(n) є простором узагальнених функцій D(n)

Див. також

Джерела


Шаблон:Math-stub