Формула Остроградського

Матеріал з testwiki
Версія від 16:16, 3 лютого 2025, створена imported>Олюсь
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Шаблон:Числення Формула Острогра́дського — формула, що виражає потік векторного поля через замкнену поверхню через інтеграл від дивергенції цього поля по об'єму, замкнутий під поверхнею.

Якщо векторне поле задане диференційовними функціями P(x,y,z), Q(x,y,z) та R(x,y,z), то

V(Px+Qy+Rz)dxdydz=SPdydz+Qdxdz+Rdxdy.

У векторній формі її можна переписати як

Vdiv𝐅dV=S𝐅d𝐒,

де

𝐅 — векторне поле.

Михайло Васильович Остроградський довів цю рівність у 1831 році.

Окремі випадки загальної формули були відомі й раніше. Двовимірний аналог цієї формули називають формулою Гріна, а сама формула також відома під назвою формула Гаусса або формула Остроградського — Гаусса.

Твердження формули є окремим випадком загальної теореми Стокса.

Теорема Остроградського застосовується при вивченні процесів, які описуються векторними полями (напр., гравітаційним полем, полем напруг, електромагнітним та магнітним полями, полем швидкостей рідини тощо).

Джерела