Поверхневий інтеграл

У математиці поверхне́вий інтегра́л — це визначений інтеграл, котрий береться по поверхні (яка може бути зігнутою множиною в просторі); його можна розглядати як подвійний інтегральний аналог лінійного інтегралу. З огляду на поверхні, можна інтегрувати скалярні поля (тобто функції, які повертають числа як значення) і векторні поля (тобто функції, які повертають вектори як значення).
Поверхневі інтеграли мають застосування у фізиці, зокрема в класичній теорії електромагнетизму.
Поверхневі інтеграли
Шмат поверхні , заданий у параметричні формі: , , , причому пробігають деяку область площини, називається гладким, якщо різні пари значень дають різні точки , часткові похідні функцій , , неперервні і завжди
- де
Якщо поверхня складається з скінченного числа гладких кусків поверхні, то називається кусково гладкою.
Гладка поверхня називається двосторонньою, якщо при обході кожної замкнутої кривої на , виходячи з будь-якої точки на , повертаємося в початкове положення з напрямом нормалі, вибраним в . Обидві сторони двосторонньої поверхні можуть бути, таким чином, охарактеризовані напрямом відповідних нормалей. Односторонньою поверхнею є, наприклад, лист Мебіуса. Усюди надалі під поверхнею розуміється двостороння поверхня.
Площа гладкої поверхні
Шаблон:Головна Хай поверхня задана параметрично: , , , причому і пробігають деяку область площини , . Тоді площа поверхні визначається поверхневим інтегралом
- , де
- ,
- ,
- .
Підінтегральний вираз
називається елементом поверхні.
Якщо задана явно рівнянням , причому пробігають область (проєкцію області на площину ), то:
- , де
- , .
Поверхневі інтеграли 1-го та 2-го роду
Поверхневі інтеграли 1-го роду

Визначення поверхневого інтегралу 1-го роду.
Нехай деяка функція визначена і обмежена на гладкій поверхні . Хай позначає деяке розбиття на скінченну кількість елементарних поверхонь (i = 1, 2 …. і) з площами , є найбільшим діаметром елементарних поверхонь і — довільна точка на відповідній елементарній поверхні (Рис. 1). Число
називається інтегральною сумою, що відповідає розбиттю . Якщо існує число з такою властивістю: для кожного знайдеться таке, що для кожного розбиття з , незалежно від вибору точок , то називається поверхневим інтегралом 1-го роду від по поверхні і записується
- .
Для окремого випадку підінтегрального виразу
число дає площу поверхні .
Обчислення (зведення до подвійного інтеграла): якщо поверхня задана параметрично:
- , , ,
причому та пробігають область площини ,
- .
Якщо поверхня задана явно рівнянням причому пробігають область , то
- .
Аналогічні формули вірні, якщо представлена рівняннями виду чи .
Поверхневі інтеграли 2-го роду

Орієнтація двосторонньої незамкнутої поверхні: вибирається певна сторона поверхні ; на кожній замкнутій кривій на визначається додатний напрям обходу так, що він разом з нормаллю вибраної сторони утворював праву трійку векторів.
Нехай в точках поверхні , розташованої однозначно над площиною і заданою явно рівнянням , визначена обмежена функцією . Нехай є розбиття поверхні на скінченну кількість елементарних поверхонь , , — найбільший діаметр елементарних поверхонь, — довільна точка, вибрана на елементарній поверхні . Якщо вибрана певна сторона поверхні і тим самим орієнтація по ній, то напрям обходу межі кожної елементарної поверхні визначає напрям обходу в площині , біля кордону проєкції . Площа цієї проєкції береться із знаком «+», якщо межа проєкції проходиться в додатному напрямі; інакше — із знаком «—» (Рис. 2).
Число
називається інтегральною сумою, що відповідає розбиттю . На противагу утворенню інтегральних сум поверхневих інтегралів 1-го роду, тут множиться не на площу (елементарній поверхні а на взяту із знаком площа проєкції поверхні на площину .
Якщо існує число з такою властивістю: для кожного знайдеться таке , що для кожного розбиття з , незалежно від вибору точок , завжди |, то називають поверхневим інтегралом 2-го роду від
- за вибраною стороною і пишуть
- .
Якщо не має взаємно однозначної проєкції на площину , але її можна розбити на скінченну кількість поверхонь, для кожної з яких існує така проєкція, то поверхневий інтеграл по визначається як сума інтегралів по окремих поверхнях.
Якщо має однозначну проєкцію на площину або , то можна визначити аналогічно два інших поверхневих інтеграла 2-го роду:
- та
- ,
де у відповідних інтегральних сумах стоять площі проєкцій на площину або .
Нарешті, для трьох функцій , , , визначених на , ці інтеграли можна додати і визначити загальніший поверхневий інтеграл другого роду:
- .
Обчислення поверхневого інтеграла 2-го роду (зведення до подвійного інтеграла)
1. Нехай поверхня має явне представлення , причому змінюються в області . Тоді поверхневий інтеграл по тій стороні , для якої кут між нормаллю і віссю є гострим, обчислюється так:
Якщо вибрана інша сторона поверхні, то
Аналогічні формули виходять для інших інтегралів:
де задана рівнянням , — проєкція на площину , а поверхневий інтеграл береться по тій стороні, нормаль до якої утворює з віссю гострий кут. Так само
де задана рівнянням , проєкція на площину , а поверхневий інтеграл береться по тій стороні, нормаль до якої складає з віссю у гострий кут.
2. Якщо поверхня задана в параметричній формі: , , , то
де
дивись рівняння угорі, додатний знак перед інтегралом справа використовується тоді, коли орієнтація області площини відповідає орієнтації вибраної сторони. Для суми трьох інтегралів отримуємо
Зв'язок між поверхневими інтегралами 1-го і 2-го роду
Якщо , , — кути нормалі до вибраної сторони поверхні з осями і , то
тобто поверхневий інтеграл 2-го роду, що стоїть зліва, перетвориться в поверхневий інтеграл 1-го роду, що стоїть справа.

Поверхневий інтеграл
має для різних незамкнутих поверхонь і з однією і тією ж границею у загальному випадку різні значення (Рис. 3), тобто він в загальному випадку не обертається в нуль на замкнутій поверхні (аналогічно залежності від шляху криволінійного інтеграла). Якщо функції
неперервні в однозв'язній просторовій області (тобто в області, яка разом з кожною замкнутою поверхнею містить також і область, обмежену цією поверхнею), то поверхневий інтеграл по всякій замкнутій поверхні в обертається в нуль тоді і тільки тоді, коли
Геометричні і фізичні застосування поверхневого інтеграла
Об'єм тіла (), обмеженого кусково гладкими поверхнями , можна різними способами обчислити як поверхневий інтеграл другого роду:
чи
чи
або
при цьому інтеграли слід брати по зовнішній стороні поверхні .
Центр тяжіння та сила притягання
Якщо поверхня покрита масою з поверхневою густиною , то повна маса поверхні дорівнює
координати центру тяжіння дорівнюють
компоненти сили притягання цього розподілу маси, що діє на матеріальну точку одиничної маси, дорівнюють
Див. також
Джерела
- Шаблон:Фіхтенгольц.укр
- Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1980. — 976 с., ил.