Файл:Uniaxial.png

Матеріал з testwiki
Перейти до навігації Перейти до пошуку
Повна роздільність (800 × 2000 пікселів, розмір файлу: 26 КБ, MIME-тип: image/png)

Цей файл з Вікісховища і може використовуватися в інших проєктах. Далі наведена інформація з його сторінки опису.

Ця діаграма має бути конвертована у векторний формат SVG. Це дає декілька переваг, докладніше про які Ви можете прочитати на сторінці Commons:Media for cleanup. Якщо Вам вже зараз доступна векторна версія даного зображення, завантажте її, будь ласка. Після завантаження замініть цей шаблон на такий: {{vector version available|Назва_завантаженого_файлу.svg}}.

Опис файлу

Source code

Instructions: on a system with a modern TeTeX or similar installed save the following two files, then run

mpost uniaxial && pdftex uniaxial

You will then need to use ghostscript or similar to make a raster image out of the pdf.

Source code author: en:user:AndrewKepert

Source code license: GPL

 Це PNG графічне зображення було створено з допомогою MetaPost

Сирцевий код

InfoField

PostScript code

picture pic[];
 pair pt[],pt[]n,pt[]e,pt[]w,pt[]s,pt[]ne,pt[]nw,pt[]se,pt[]sw;
 pair ux,uy,uz;
 path unitcircle; unitcircle=fullcircle scaled 2;
 boolean front[];
 color colour[];
 path p[];
 
 u=16;
 ux=.4*down*u;
 uy=right*2u;
 uz=up*.5u;
 
 transform xyplane[];
 (0,0) transformed xyplane0 = (0,0);
 (1,0) transformed xyplane0 = ux;
 (0,1) transformed xyplane0 = uy;
 for i = -1 step 1/16 until 1:
     xyplane[i]=xyplane[0] shifted (i*uz);
 endfor
 
 theta=10;
 alpha=8;
 
 N:=6;
 
 for i = -1 step .5 until N+1:
     pt[i]   = right rotated  theta        rotated (360i/N) transformed xyplane0;
     front[i]= ypart pt[i] < ypart xyplane0;
     pt[i]e  = right rotated (theta+alpha) rotated (360i/N) transformed xyplane0;
     pt[i]w  = right rotated (theta-alpha) rotated (360i/N) transformed xyplane0;
     pt[i]n  = right rotated  theta        rotated (360i/N) transformed xyplane[.75];
     pt[i]ne = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[.75];
     pt[i]nw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[.75];
     pt[i]s  = right rotated  theta        rotated (360i/N) transformed xyplane[-.75];
     pt[i]se = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[-.75];
     pt[i]sw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[-.75];
 endfor
 
 t0=directiontime uz of (unitcircle transformed xyplane0);
 t1=directiontime -uz of (unitcircle transformed xyplane0);
 t2=t0+length unitcircle;
 
 path backface,frontface;
 backface:=(subpath (t0,t1) of unitcircle transformed xyplane[1])
         -- (subpath (t1,t0) of unitcircle transformed xyplane[-1])
         -- cycle;
 frontface:= (subpath (t1,t2) of unitcircle transformed xyplane[1])
         -- (subpath (t2,t1) of unitcircle transformed xyplane[-1])
         -- cycle;
 
 colour0:=(.8,.85,1);
 colour1:=.8[black,colour0];
 colour2:=.6[black,colour1];
 
 def constructribbon(expr delta)=
     % stuff on back face
     pic1:=image( for i = 0 step delta until N-eps: if not front[i]: fill p[i]; fi endfor
         fill (subpath (t0,t1) of unitcircle transformed xyplane[1/16])
         -- (subpath (t1,t0) of unitcircle transformed xyplane[-1/16])
         -- cycle;);
     % stuff on front face
     pic2:=image( for i = 0 step delta until N-eps: if  front[i]: fill p[i]; fi endfor
         fill (subpath (t1,t2) of unitcircle transformed xyplane[1/16])
         -- (subpath (t2,t1) of unitcircle transformed xyplane[-1/16])
         -- cycle;);
     % all of back face
     pic0:=image(fill frontface withcolor colour0;
         fill backface withcolor colour1;
         draw pic1 withcolor colour2);
     fill backface withcolor colour0;
     fill frontface withcolor colour0;
     draw pic1;
     clip pic0 to frontface;
     draw pic0;
     draw pic2;
     draw unitcircle transformed xyplane[1] withpen pencircle scaled 0.2 withcolor colour1;
     draw subpath (t2,t1) of unitcircle transformed xyplane[-1] withpen pencircle scaled 0.2 withcolor colour1;
 enddef;
 
 beginfig(1)
     for i=0 upto N-1:
         p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
     endfor
     constructribbon(1);
 endfig;
 
 beginfig(2)
     for i=0 upto N-1:
         p[i]:=  pt[i]w--pt[i]ne--pt[i]se--cycle ;
     endfor
     constructribbon(1);
 endfig;
 
 beginfig(3)
     for i=0 upto N-1:
         p[i]:= pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
     endfor
     constructribbon(1);
 endfig;
 
 beginfig(4)
     for i=0 upto N-1:
         %p[i]:=  pt[i]--pt[i]ne--pt[i]e--pt[i]--pt[i]sw--pt[i]w--cycle ;
         p[i]:=          pt[i]ne--pt[i]e--       pt[i]sw--pt[i]w--cycle ;
     endfor
     constructribbon(1);
 endfig;
 
 beginfig(5)
     for i=0 upto N-1:
         p[i]:=  pt[i]n--pt[i]e--pt[i]s--pt[i]w--cycle ;
     endfor
     constructribbon(1);
 endfig;
 
 beginfig(6)
     for i=0 upto N-1:
         p[i]:=  pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
         p[i+.5]:=  pt[i+.5]--pt[i+.5]e--pt[i+.5]s--pt[i+.5]w--cycle ;
     endfor
     constructribbon(1/2);
 endfig;
 
 beginfig(7)
     for i=0 upto N-1:
         if odd i:
             p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
         else:
             p[i]:= pt[i]--pt[i]w--pt[i]se--pt[i]e--cycle;
         fi
     endfor
     constructribbon(1);
 endfig;
 
 
 bye

Data

\input supp-pdf
 {\tabskip=5pt  \lineskiplimit=5pt  \lineskip=\lineskiplimit
 \halign{\hfil#\hfil&\hfil$\vcenter{\convertMPtoPDF{#}{1}{1}}$\hfil\cr
     $C_6$&uniaxial.1\cr
     $C_{6h}$&uniaxial.2\cr
     $C_{6v}$&uniaxial.3\cr
     $D_6$&uniaxial.4\cr
     $D_{6h}$&uniaxial.5\cr
     $D_{6d}$&uniaxial.6\cr
     $S_6$&uniaxial.7\cr
     }
 }
 \bye

Ліцензування

Я, власник авторських прав на цей твір, добровільно публікую його на умовах таких ліцензій:
GNU head Дозволяється копіювати, розповсюджувати та/або модифікувати цей документ на умовах ліцензії GNU FDL версії 1.2 або більш пізньої, виданої Фондом вільного програмного забезпечення, без незмінних розділів, без текстів, які розміщені на першій та останній обкладинці. Копія ліцензії знаходиться у розділі GNU Free Documentation License.
w:uk:Creative Commons
зазначення авторства поширення на тих же умовах
Цей файл ліцензований на умовах ліцензії Creative Commons Attribution-Share Alike 3.0 Unported
Ви можете вільно:
  • ділитися – копіювати, поширювати і передавати твір
  • модифікувати – переробляти твір
При дотриманні таких умов:
  • зазначення авторства – Ви повинні вказати авторство, надати посилання на ліцензію і вказати, чи якісь зміни було внесено до оригінального твору. Ви можете зробити це в будь-який розсудливий спосіб, але так, щоб він жодним чином не натякав на те, наче ліцензіар підтримує Вас чи Ваш спосіб використання твору.
  • поширення на тих же умовах – Якщо ви змінюєте, перетворюєте або створюєте іншу похідну роботу на основі цього твору, ви можете поширювати отриманий у результаті твір тільки на умовах такої ж або сумісної ліцензії.
Цей шаблон ліцензування був доданий до файлу в рамках оновлення ліцензії GFDL.
w:uk:Creative Commons
зазначення авторства поширення на тих же умовах
Цей файл доступний на умовах ліцензій Creative Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic та 1.0 Generic.
Ви можете вільно:
  • ділитися – копіювати, поширювати і передавати твір
  • модифікувати – переробляти твір
При дотриманні таких умов:
  • зазначення авторства – Ви повинні вказати авторство, надати посилання на ліцензію і вказати, чи якісь зміни було внесено до оригінального твору. Ви можете зробити це в будь-який розсудливий спосіб, але так, щоб він жодним чином не натякав на те, наче ліцензіар підтримує Вас чи Ваш спосіб використання твору.
  • поширення на тих же умовах – Якщо ви змінюєте, перетворюєте або створюєте іншу похідну роботу на основі цього твору, ви можете поширювати отриманий у результаті твір тільки на умовах такої ж або сумісної ліцензії.
Ви можете обрати ліцензію на ваш розсуд.

Підписи

Додайте однорядкове пояснення, що саме репрезентує цей файл

Об'єкти, показані на цьому файлі

зображує

Історія файлу

Клацніть на дату/час, щоб переглянути, як тоді виглядав файл.

Дата/часМініатюраРозмір об'єктаКористувачКоментар
поточний09:28, 5 липня 2006Мініатюра для версії від 09:28, 5 липня 2006800 × 2000 (26 КБ)wikimediacommons>AndrewKepert~commonswikiAuthor: user:en:AndrewKepert Toolchain: MetaPost and TeX. Source: will be uploaded Description: Illustration of a typical member of each of 7 infinite families of 3D point groups. Destination: en:Point groups in three dimensions. Permission: GF

Така сторінка використовує цей файл: