Подвійний бета-розпад

Матеріал з testwiki
Версія від 16:24, 24 липня 2024, створена imported>MonxBot (Заміна старих тегів на актуальні аналоги (en:Wikipedia:HTML5))
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Подві́йний бе́та-ро́зпад, 2β-розпад, ββ-розпад — загальна назва декількох видів радіоактивного розпаду атомного ядра, які зумовлені слабкою взаємодією та змінюють заряд ядра на дві одиниці. Подвійний бета-розпад у власному значенні слова супроводжується збільшенням заряду ядра на дві одиниці й випромінюванням двох електронів:

(A,Z)(A,Z+2)+2e+2ν¯e.

Інші види 2β-розпаду зменшують заряд ядра на дві одиниці:

(A,Z)+2e(A,Z2)+2νe;
(A,Z)+e(A,Z2)+e++2νe;
(A,Z)(A,Z2)+2e++2νe.

Вперше подвійний бета-розпад було розглянуто Марією Гепперт-Маєр 1935 року. Вона розробила теорію процесу на основі робіт Енріко Фермі, в яких було сформульовано закономірності взаємодії нуклонів. Марія Гепперт-Маєр оцінила ймовірність процесу для ядер з найбільшими енергіями 2β-переходу й дійшла висновку, що періоди напіврозпаду ядер відносно подвійного бета-розпаду значно перевищують геологічний вік Землі[1].

Подвійний бета-розпад — найрідкісніший з усіх процесів радіоактивного розпаду. Усі 11 нуклідів, для яких цей процес достеменно спостерігався, мають період напіврозпаду більше 1019 років, а період напіврозпаду 128Te) становить 2×1024 років — це найдовший період серед усіх радіоактивних ізотопів[2]. Слід зазначити, що підтверджені спостереження належать лише до 2β-розпаду зі збільшенням заряду ядра.

Розпад може відбуватися не тільки в основний стан дочірнього ядра, а й у збуджені стани (такий процес спостерігається в ядрах 100Mo і 150Nd). У цьому випадку випромінюється також один або декілька гамма-квантів і/або конверсійних електронів.

Безнейтринний подвійний бета-розпад

На відміну від наведених вище процесів (що належать до двонейтринного 2ν2β-розпаду), безнейтринний 0ν2β-розпад не супроводжується емісією нейтрино або антинейтрино. У результаті такого 0ν2β-розпаду лептонне число не зберігається (змінюється на дві одиниці). Хоча Стандартна Модель фізики елементарних частинок забороняє процеси з порушенням закону збереження лептонного числа, багато розширень СМ включають процеси такого роду. Доведено, що для здійснення безнейтринного 2β-розпаду необхідно, щоб нейтрино було масивною майоранівською частинкою (тобто було власною античастинкою)[3].

Завдяки цій обставині, 0ν2β-розпад є чутливим індикатором майоранівської маси нейтрино. Станом на 2016 рік не існує достовірних спостережень безнейтринних 2β-процесів, проте нижні обмеження на період напіврозпаду за цим каналом для різних ядер досягають 1025 — 1026 років[4]. Це відповідає верхньому обмеженню на ефективну масу нейтрино Майорани близько 0,04 — 0,5 еВ. Крім того, обмеження на ймовірність безнейтринного 2β-розпаду дозволяють встановити обмеження на інші параметри теорії, наприклад на константи зв'язку правих лептонних і кваркових струмів у слабкій взаємодії, константи зв'язку нейтрино з майороном, деякі параметри суперсиметричних моделей.

У даний час у світі діють, споруджуються або розробляються близько десятка великих підземних детекторів, призначених для пошуку безнейтринного подвійного бета-розпаду: SuperNEMO, GERDA, CUORE, MAJORANA, EXO, CANDLES, SNO+, KamLAND-Zen, AMoRE, CUPID та інші.

В Україні дослідження подвійного бета-розпаду ведуться у відділі фізики лептонів Інституту ядерних досліджень Національної академії наук України.

Див. також

Примітки

Шаблон:Reflist

Шаблон:Без зображень

Шаблон:Ядерні реакції

  1. Шаблон:Cite news
  2. Шаблон:Cite news
  3. A. Franklin, Are There Really Neutrinos?: An Evidential History (Westview Press, 2004), p. 186
  4. A. Barabash, Double Beta Decay Experiments: Recent Achievements and Future Prospects, Universe 9 (2023) 290, https://doi.org/10.3390/universe9060290.