Очищення води

Матеріал з testwiki
Версія від 06:36, 2 березня 2025, створена imported>A.sav (clean up, replaced: концетрації → концентрації, typos fixed: 0-тих → 0-х за допомогою AWB)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Очищення води - процес видалення небажаних фізико-хімічних і біологічних складових з водної суспензії і розчинів природного і антропогенного походження. Води до яких застосовують очищення умовно поділяють на природні, стічні і дренажні. Застосування тої чи іншої  технологій очищення визначають саме характеристики складової  водної суспензії чи розчину яку необхідно вилучити. Наразі в нас набув майже суцільного  поширення підхід з визначення тих чи інших технологічних засобів очищення вод, що спирається на  класифікацію домішок і забруднень води за їх фазово-дисперсним станом (суспензія (розмір і властивості домішок),  розчин, то що). Даний підхід було запропоновано на початку 80-х років ХХ сторіччя. Формальну першу масову публікацію такий підхід отримав в роботі Кульського Л.А. та Накорчевскої В.Ф. - Химия воды: Физико-химические процессы об-работки природных и сточных вод. Кульский Л. А., Накорчевекая В. Ф. — К.: Вища школа. Голов¬ное изд-во, 1983.—240 с. В цій роботі було формалізовано принцип класифікації домішок і забруднень води за їх фазово-дисперсним станом. Тобто головна рол відведена дисперсності та агрегативній і кінетичній стійкості частинок.

Існує ряд інших підходів що базуються на дещо інших підходах. Наприклад відповідно до класифікації О. А. Алекіна, природні води поділяються на три класи по переважному аніону (С-; S-; Cl-) і три групи по переважному катіону (Na+, Са2+, Mg2+). Кожна група, в свою чергу, характеризується трьома типами вод, що визначаються співвідношенням між іонами.  Дві з них належать до гетерогенних систем, представлених у воді взвесями, колоїдами, емульсіями і піною. Обов'язковою ознакою гетерогенних систем є існування поверхонь розділу. Дві інші належать до гомогенним системам - речовин, що створює з водою молекулярні та іонні розчини. Чим менше розмір часток дисперсної фази в дисперсійному середовищі, тим більше величина їх питомої міжфазної поверхні і тим сильніше вплив поверхневих явищ на властивості системи.

Існує також цілий ряд інших підходів утворених на дещо відмінних  класифікаціях.

У випадку застосування методів класифікації  Кульського Л.А. для очищення природних вод є рекомендованими методи підготовки води питної якості в залежності від класів джерел водопостачання:

1 класу - вода не вимагає підготовки;

2 класу - відстоювання, фільтрування, знезараження;

3 класу - фільтрування з реагентної обробкою, знезараженням.

Класифікація домішок за їх фазово-дисперсному станом  Кульського Л.А.

Група Характер домішок Розмір частин, см Структурні

системи

I

Зависі

Суспензії, емульсії, мікроор-організми, планктон 10−2-10−5 Гетерогенні
II

Колоїдні розчини

Колоїди, високомолекулярні сполуки, віруси 10−5-10−6 Гетерогенні
III

Молекулярні

розчини

Гази, розчинні у воді, органічні речовини, що додають запах і присмак 10−6-10−7 Гомогенні
IV

Іонні розчини

Солі, кислоти, основи 10−7-10−8 Гомогенні

Історія

За часів римлян не здійснювалася дезинфекція. Не вживалися заходи по стерилізації, асептиці, антисептиці тощо. Римляни очищували воду лише шляхом її відстоювання. Акведуки були наділені спеціальними резервуарами-відстійниками, у яких вода з плином часу очищувалася від дисперсперсної фази, яка осідала.

У воді з римських акведуків у надлишковій кількості містився свинець, оскільки частина труб, по яким йшла вода, були свинцевими. Постійне вживання такої води призводило до того, що канцерогенний свинець накопичувався у організмі й провокував розвиток ракових захворювань. Як наслідок — тривалість життя римлян не перевищувала 25 років[1][2].

Санітарно-мікробіологічий аналіз води та вибір джерел водопостачання

Санітарно-мікробіологічний аналіз води здійснюється за методичними вказівками (МУ) 2285-81, розроблені міністерством охорони здоров'я СРСР, Інститутом загальної та комунальної гігієни ім. А. Н. Сисіна АМН СРСР.

Вибір джерел для централізованого водопостачання здійснюється відповідно до вимог, встановлених у ДСТУ 4808:2007.

Бактерії Pseudomonas veronii можуть використовуватися для високоточного аналізу чистоти води[3].

Мембранне фільтрування - як одна з можливих технологій водопідготовки

Тангенційно-потокове фільтрування — технологічний процес під тиском. Суміш рідини із твердими речовинами контактує із мембраною так, що рідина проходить через мембрану. Потік рідини через мембрану обумовлений градієнтом гідравлічного тиску. У випадку зворотного осмосу й нанофільтрації осмотичний тиск розчину спрямований назустріч фільтраційному тискові. При ультра- й мікрофільтрації осмотичний тиск є дуже малим через велику молекулярну вагу розчинених речовин.

Розчинена речовина, яка не проходить через мембрану, накопичується у тонкому граничному шарі біля поверхні мембрани й призводить до зміни концентрації у напрямку, протилежному фільтрації. Розчинена речовина завдяки градієнту концентрації дифундує через цей граничний шар. Це явище, яке називається концентраційною поляризацією, відіграє важливу роль у всіх різновидах тангенційно-потокового фільтрування, причому механізм дифузії залежить від типу розчиненої речовини.

Схема руху потоків у мембранному фільтрі із зовнішньою фільтруючою поверхнею[4]

Робота мембранного фільтрування оцінюється з точки зору її здатності давати за короткий час великі об'єми фільтрату й ступенем чистоти фільтрату відносно концентрації розчиненої речовини. Для цього застосовються два інверсальних параметри — потік пермеату й кількість відфільтрованої речовини. Потік пермеату J визначається як об'єм пермеату, який проходить через одиницю площи мембрани на одиницю часу (л / м2 * год):

Потік пермеату(проникність)J=Об'єм пермеатуплоща мембрани×час

Кількість відфільтрованої речовини визначається як відношення маси розчиненої речовини, затриманої мембраною, до її маси у надходжуваному потоці, й зазвичай виражається у відсотках.

Кількість відфільтрованої речовини (селективність)×100%=[1Концентрація речовини у пермеатіКонцентрація речовини у початковому потоці]

Коли об'єм розчину V зменшується на dV для збільшення його концентрації C на dC за допомогою мембрани із затримуючою здатністю σ, нова концентрація обчислюється по формулі:

CdC=CVC(1σ)dVVdV.

Після спрощень дане рівняння зводиться до

dCC=σdVV.

Це рівняння можна інтегрувати, коли затримуюча здатність σ є простою функцією концентрації. Коли затримуюча здатність залишається сталою незалежно від концентрації, отримується наступне рівняння, яке співвідносить об'ємне відношення із концентраційним.

CC0=(V0V)σ.

Це рівняння застосовується до так званих «пропорційних» систем концентрації, але шляхом заміни об'ємів V та V0 на витрати Q та Q0 його можна застосовувати й до неперервних систем.

Матеріали мембран

Основна маса мікрофільтраційних мембран — це полімерні мембрани. При виготовленні мембран шляхом травлення полімерна плівка зазнає впливу випромінювання, яке розриває полімерні ланцюжки, а потім — травлення у хемічній ванні, де пошкоджені області розчиняються. Цим способом роблять мембрани із циліндричними порами, причому діапазон розмірів пор дуже малий (0,01-10 мкм). Це дозволяє використовувати такі мембрани для сепарації мікрочастинок по розмірам, їх концентрування, ультратонкої очистких рідких й газоподібних середових, стерилізації рідин.

Завдяки великому числу пор (106109 см−2) й малій товщині такі мембрани мають високу пропускну здатність для рідин та газів (до 102м3/м2год та 3104м3/м2год).

Для їх виготовлення застосовуються, наприклад, плівки з поліетилентерефталату та інші полімерні матеріали, які є стійкими до впливів.

У роботі мембран важливу роль відіграют матеріали, з яких вони виготовлені, та характеристики їх поверхні. Гідрофільні матеріали (наприклад, ацетат целюлози) менше зазнають засмічення поверхні масляними речовинами, ніж гідрофобні (наприклад, полісульфон). Як високогідрофільний матеріал, який застосовується у мембранах для ультра- й мікрофільтрації, використовують поліакрилонітрил.

Інші методи

Високі адсорбційні й йонобмінні властивості глауконіту й гідробіотиту обумовлюють застосування їх для очищення й пом'якшення води. Активоване вугілля добре підходить для доочищення води від хлорорганічних сполук, фенолів, пестицидів, нафтопродуктів, сполук тяжких металів тощо (наприклад, вміст ртуті у водах річок знаходиться у приблизних межах n107...n106 г/л [5]). Ртуть є кумулятивною отрутою (тобто здатна накопичуватися у організмі), яка порушує роботу білків через афінність до сірки[6]. Гранично припустима концентрація ртуті (середньодобова) у питній воді складає 0,0005 мг/м3 [7]. Для очищення води від ртуті може застосовуватися дисульфід молібдену[8].

Ефективний механізм адсорбції на активному вугіллі пояснюється тим, що атоми вуглецю на поверхні графітоподібних мікрокристалів знаходяться у іншому електронному й енергетичному стані, на відміну від атомів об'ємної фази, особливо у місцях дефектів кристалічної ґратки. Нявність у таких атомів вільних валентностей забезпечує їх хемічну й сорбційну взаємодію із різними речовинами.[9]

Для очищення води можуть застосовуватися наночастинки SFNPs й нанокомпозити SFNCs[10][11][12].

Як сорбційний матеріал може застосовуватися шкірка волоського горіху[13].

Проблема біоплівок

Кінцеві метаболіти бактерій — екзополісахариди, екзоліпополісахариди, карбонові кислоти, ферменти тощо, сприяють деструкції захисних матеріалів й обростанню колоніями бактерій («біоплівками») систем водопостачання.

Біоплівки у трубі

Для подолання проблеми наростання біоплівок й отруєння води продуктами життєдіяльності мікроорганізмів можуть застосовуватися антибактеріальні покриття. Встановлено, що серед досліджених антисептиків найкращими біоцидними властивостями наділені титан й аміновмісткі сполуки[14][15][16]. Проблему адгезії (прилипання до внутрішньої поверхні труби) мікроорганізмів можуть вирішити ліофобні добавки до наношуваних покриттів (типу сажі)[17].

Див. також

Джерела

Шаблон:Примітки

  • Kennet J. Valentas — Food engineering practice.
  • Поляков Юрий Сергеевич — Неравномерное осаждение частиц на внешней и внутрненней поверхности полупроницаемых мембран.

Література

  • Довідник сучасних технологій з очищення природної і стічної води та обладнання / [І. В. Панасюк та ін. ; під заг. ред. І. В. Панасюка] ; Київ. нац. ун-т технологій та дизайну. — Київ : Медінформ, 2016. — 245 с. : іл., табл. — Бібліогр.: с. 231—234 (38 назв). — ISBN 978-966-409-191-3

Посилання

Див. також