Градієнтна теорема

Матеріал з testwiki
Версія від 08:14, 1 вересня 2023, створена imported>Олюсь
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Шаблон:Числення Градієнтна теорема, або фундаментальна теорема числення для криволінійних інтегралів, стверджує, що криволінійний інтеграл над градієнтним полем можна розрахувати через розрахунок початкового скалярного поля в кінцевих точках кривої.

Нехай φ:Un і γ є довільною кривою від точки p до q. Тоді

φ(𝐪)φ(𝐩)=γ[𝐩,𝐪]φ(𝐫)d𝐫.

Це є узагальненням фундаментальної теореми числення для будь-якої кривої на площині або у просторі (у загальному n-вимірному випадку), а не лише для дійсних кривих.

Градієнтна теорема стверджує, що криволінійні інтеграли у градієнтному полі не залежать від пройденого шляху. В фізиці ця теорема є однією із форм визначення консервативних сил, де φ означатиме потенціал, а ∇φ це потенціальне векторне поле. Робота яку здійснюють консервативні сили не залежить від шляху, що пройдений об'єктом, а залежить лише від кінцевих точок, як показує наведене вище рівняння.

Джерела