Граф Фрухта

Матеріал з testwiki
Версія від 13:33, 18 жовтня 2023, створена imported>InternetArchiveBot (Виправлено джерел: 1; позначено як недійсні: 0.) #IABot (v2.0.9.5)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку

Шаблон:Граф В теорії графів Графом Фрухта називається 3-регулярний граф з 12 вершинами і 18 ребрами без нетривіальних симетрій[1]. Граф вперше був описаний Шаблон:Не перекладено в 1939 році[2].

Граф Фрухта — це граф Халіна з хроматичним числом 3, хроматичним індексом 3, радіусом 3, діаметром 4 і обхватом 3. Як і всі графи Халіна, граф Фрухта є планарним, 3-вершинно-зв'язним і багатогранним графом. Він також є k-реберно-зв'язним графом. Його число незалежності дорівнює 5.

Граф Фрухта є гамільтоновим і може бути побудований за LCF-записом [-5,-2,-4,2,5,-2,2,5,-2,-5,4,2].

Алгебраїчні властивості

Граф Фрухта — це один з двох мінімальних кубічних графів, що мають єдиний автоморфізм — тотожність[3] (таким чином, будь-яка вершина може бути топологічно відрізана від інших). Такі графи називаються асиметричними графами. Теорема Фрухта стверджує, що будь-яку групу можна представити як групу симетрій графу[2], а посилення цієї теореми, теж Фрухт, стверджує, що будь-яка група може бути представлена ​​як група симетрій 3-регулярного графу[4]. Граф Фрухта дає приклад такої реалізації для тривіальної групи.

Характеристичний многочлен графу Фрухта дорівнює (x3)(x2)x(x+1)(x+2)(x3+x22x1)(x4+x36x25x+4).

Галерея

Посилання

Шаблон:Reflist

  1. Шаблон:MathWorld
  2. 2,0 2,1 Шаблон:Стаття.
  3. Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990
  4. Шаблон:Стаття.