Тетраедр Рело

Матеріал з testwiki
Версія від 19:10, 17 вересня 2024, створена imported>Lxlalexlxl (+Категорія:Тетраедри; ±Категорія:СтереометріяКатегорія:Геометричні тіла за допомогою HotCat)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)
Перейти до навігації Перейти до пошуку
Тетраедр Рело

Тетраедр Рело — тіло, що є перетином чотирьох однакових куль, центри яких розташовані в вершинах правильного тетраедра, а радіуси рівні стороні цього тетраедра. Це тіло є просторовим аналогом трикутника Рело як перетину трьох кіл на площині.

Однак, на відміну від трикутника Рело, тетраедр Рело не є тілом сталої ширини: відстань між серединами протилежних граничних криволінійних ребер, що з'єднують його вершини, в

322=1.02494

раз більше, ніж ребро початкового правильного тетраедра[1][2].

Тіла Мейсснера

Тетраедр Рело можна видозмінити так, щоб змінне тіло виявилося тілом сталої ширини. Для цього в кожній з трьох пар протилежних криволінійних ребер одне ребро певним чином «згладжується»[2]Шаблон:Sfn. Отримувані таким способом два різних тіла (три ребра, на яких відбуваються заміни, можуть бути взяті або вихідними із однієї вершини, або такими, що утворюють трикутникШаблон:Sfn) називаються тілами Мейсснера, або тетраедрами Мейсснера[1]. Сформульована Томмі Боннесеном і Вернером Фенхелем в 1934 році[3] гіпотеза стверджує, що саме ці тіла мінімізують об'єм серед всіх тіл заданої постійної ширини, проте (за станом на 2009 рік) ця гіпотеза не доведена[4].

Примітки

Шаблон:Примітки

Література