Теорема Кнастера — Тарського
Нехай D — -область, — неперервне відображення задане на цій області. Тоді існує найменша нерухома точка , яка позначається , для якої справедлива формула:
- ,
де
Альфред Тарський сформулював теорему в її найзагальнішій формі[1]
Доведення
Доведення складається з трьох частин:
- Доведення факту, що множина — ланцюг (тому її супремум існує).
- Доведення того, що є нерухомою точкою .
- Доведення, що є найменшою з нерухомих точок .
Використані терміни
Омега-область
Множина D — -область (також вживається термін індуктивна множина, -домен), якщо
- на D введено частковий порядок
- в D існує найменший елемент
- D є повною частково впорядкованою множиною